DOI QR코드

DOI QR Code

Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress

가뭄 조건 하에서 바이오폴리머 혼합 토양이 Camelina sativa L.의 생장에 미치는 긍정적 영향

  • Lim, Hyun-Gyu (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Kim, Hyun-Sung (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Lee, Hyeon-Sook (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Sin, Jung-Ho (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Kim, Eun-Suk (Department of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology School) ;
  • Woo, Hyo-Seop (Department of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology School) ;
  • Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Chonnam National University)
  • 임현규 (전남대학교 바이오에너지공학과) ;
  • 김현성 (전남대학교 바이오에너지공학과) ;
  • 이현숙 (전남대학교 바이오에너지공학과) ;
  • 신정호 (전남대학교 바이오에너지공학과) ;
  • 김은석 (광주과학기술원 지구.환경공학부) ;
  • 우효섭 (광주과학기술원 지구.환경공학부) ;
  • 안성주 (전남대학교 바이오에너지공학과)
  • Received : 2018.09.07
  • Accepted : 2018.09.21
  • Published : 2018.09.30

Abstract

The biopolymer (BP) used in this study is mainly composed of xanthan gum and ${\beta}$-glucan derived from microorganism and has been introduced as a novel material for soil stabilization. However, the broad applicability of BP has been suggested in the field of geotechnical engineering while little information is available about the effects of BP on the vegetation. The goal of this study is to find the BP effects on the growth of Camelina sativa L. (Camelina) under drought condition. For more thorough evaluation of BP effects on the plant growth, we examined not only morphological but also physiological traits and gene expression patterns. After 25 days of drought treatment from germination in the soil amended with 0, 0.25, 0.5, and 1% BP, we observed that the BP concentration was strongly correlated the growth of Camelina. When plants were grown under drought stress, Camelina in 0.5% BP mixture showed better physiological parameters of the leaf stomatal conductance, electrolyte leakage and relative water content compared to those in control soil without BP. Plant recovery rate after re-watering was higher and the development of lateral root was lower in BP amended soil. RNA expression of Camelina leaf treated with/without drought for 7 and 10 days showed that aquaporin genes transporting solutes at bio-membrane, CsPIP1;4, 2;1, 2;6 and TIP1;2, 2;1, were induced more in the plants with BP amendment and drought treatment. These results suggest that the soil amended with BP has a positive effect on the transport of nutrients and waters into Camelina by improving water retention in soil under drought condition.

본 연구에서 사용된 바이오폴리머는 미생물로부터 추출한 ${\beta}$-glucan 및 xanthan gum 이 주성분인 친환경 신소재이며, 토양에 처리하면 강도 증진을 통한 제방의 침식 및 유실 감소뿐만 아니라 토양 내 수분보유력을 증가시키는 것으로 보고되어 있다. 그러나 바이오폴리머가 제방에 적용되었을 때 주변 식생에 미치는 영향에 대한 연구는 미흡한 상황이다. 본 연구는 가뭄 조건에서 토양 내 바이오폴리머 혼합 유무에 따라 Camelina sativa L. (Camelina)의 생육에 미치는 영향을 알아보고자 하였다. 각각 0, 0.25, 0.5, 1%의 바이오폴리머가 혼합된 토양에서 발아로부터 25일간 가뭄 처리 후 표현형을 관찰한 결과, 혼합된 바이오폴리머 농도가 높을수록 가뭄 피해가 감소하였다. 특히 25일 동안의 가뭄 처리된 0.5% 바이오폴리머 혼합구에서 신장, 엽장, 엽폭이 대조구 보다 각각 약 30, 70, 170% 증가하였다. 이후 재급수를 통한 바이오폴리머 혼합구의 회복률 또한 약 80% 높게 나타났다. 식물의 근권 발달을 보기 위해 20일 동안 가뭄을 처리하였으며, 대조구에 비해 바이오폴리머 혼합구에서 측근 형성 및 발달이 약 40% 감소한 것을 확인하였다. Camelina에 가뭄 처리하여 기공전도도, 전해질 유출도, 상대적 수분함량 등 생리적 반응을 조사한 결과, 바이오폴리머의 혼합이 가뭄으로 인한 피해를 각각 약 50, 70, 50% 감소시켰다. 바이오폴리머가 가뭄 조건 하에서 식물의 생장에 미치는 영향을 분자수준에서 알아보기 위해 Reverse Transcription- Polymerase Chain Reaction (RT-PCR)을 통한 유전자 발현양상을 분석하였다. 수분수송 관련 유전자 (aquaporin)인 PIP1;4, 2;1, 2;6 및 TIP1;2, 2;1 발현이 바이오폴리머 혼합구 및 가뭄 처리된 Camelina 잎에서 더 높게 나타났다. 이러한 결과를 종합하였을 때, 바이오폴리머는 가뭄 조건에서 토양 내 수분보유력을 유지시킴으로써 Camelina의 양 수분의 흡수 및 생육에 긍정적인 영향을 주는 것으로 보인다.

Keywords

References

  1. Agassi, M. and Ben-Hur, M. 1992. Stabilizing steep slopes with soil conditioners and plants. Soil Technology 5: 249-256. https://doi.org/10.1016/0933-3630(92)90025-V
  2. Bajji, M., Kinet, J.M., and Lutts, S. 2001. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation 36: 61-70.
  3. Ben-Hur, M. and Letey, J. 1989. Effect of polysaccharides, clay dispersion, and impact energy on water infiltration. Soil Science Society of America Journal 53: 233-238. https://doi.org/10.2136/sssaj1989.03615995005300010041x
  4. Chang, I and Cho, G.C. 2012. Strengthening of Korean residual soil with ${\beta}$-1,3/1,6-glucan biopolymer. Construction and Building Materials 30: 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
  5. Chang, I., Im, J., Prasidhi, A.K., and Cho, G.C. 2015. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  6. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D., and Cho, G.C. 2015. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253-254: 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
  7. Coupland and Johnson. 1965. Rooting characteristics of native grassland species in Saskatchewan. Journal of Ecology 52: 475-507.
  8. Ghestem, M., Sidle, R.C., and Stokes, A. 2011. The influence of plant root systems on subsurface flow: Implications for slope stability. BioScience 61(11): 869-879. https://doi.org/10.1525/bio.2011.61.11.6
  9. Hansen, P.J. 2002. Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquatic Microbial Ecology 28: 279-288. https://doi.org/10.3354/ame028279
  10. Jang, H.Y., Rhee, J., Carlson, J.E., and Ahn, S.J. 2014. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses. Journal of Plant Physiology 171: 1401-1412. https://doi.org/10.1016/j.jplph.2014.06.009
  11. Jang, H.Y., Yang, S.W., Carlson, J.E., Ku, Y.G., and Ahn, S.J. 2013. Two aquaporins of Jatropha are regulated differentially during drought stress and subsequent recovery. Journal of Plant Physiology 170: 1028-1038. https://doi.org/10.1016/j.jplph.2013.03.001
  12. Kim, H.S., Oh, J.M., Luan, S., Carlson, J.E., and Ahn, S.J. 2013. Cold stress causes rapid but differential changes in properties of plasma membrane $H^+$-ATPase of camelina and rapeseed. Journal of plant physiology 170: 828-837. https://doi.org/10.1016/j.jplph.2013.01.007
  13. Li, G.W., Peng, Y.H., Yu, X., Zhang, M.H., Cai, W.M., Sun, W.N., and Su, W.A. 2008. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology 165: 1879-1888. https://doi.org/10.1016/j.jplph.2008.05.002
  14. Masoumi, A., Kafi, M., Khazaei, H., and Davari, K. 2010. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (Kochia scoparia) under saline condition. Pakistan Journal of Botany 42: 3517-3524.
  15. Matthees, H.L., Thom, M.D., Gesch, R.W., and Forcella, F. 2018. Salinity tolerance of germinating alternative oilseeds. Industrial Crops and Products 113: 358-367. https://doi.org/10.1016/j.indcrop.2018.01.042
  16. Oss, H.G.V. 2014. Cement statistics and Information. US Geological Survey: Reston, VA, USA.
  17. Ouyang, W., Struik, P.C., Yin, X., and Yang, J. 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany 68: 5191-5205. https://doi.org/10.1093/jxb/erx314
  18. Park, W., Feng, Y., and Ahn, S.J. 2014. Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnology for Biofuels 7: 96. https://doi.org/10.1186/1754-6834-7-96
  19. Park, Y.M. 1990. Effects of drought on two grass species with different distribution around coastal sand-dunes. Functional Ecology 4: 735-741. https://doi.org/10.2307/2389440
  20. Rapier, R. 2012. Global Carbon Dioxide Emissions - Facts and Figures. Consumer Energy Report, USA.
  21. Raza, M.A.S., Shahid, A.M., Ijaz, M., Khan, I.H., Saleem, M.F., and Ahmad, S. 2015. Studies on canola (Brassica napus L.) and camelina (Camelina sativa L.) under different irrigation levels. ARPN Journal of Agricultural and Biological Science 10: 130-138.
  22. Richman, D.L., Tucker, C.L., and Koehler, P.G. 2006. Influence of Portland cement amendment on soil pH and residual soil termiticide performance, Pest Management Science 62: 1216-1223. https://doi.org/10.1002/ps.1274
  23. Taylor, H.F.W. 1997. Cement Chemistry; Thomas Telford Publishing, London, UK (in UK).
  24. Vahedifard, F., AghaKouchak, A., and Robinson, J.D. 2015. Drought threatens California's Levees. Science 349: 799.
  25. Worrell, E., Price, L., Martin, N., Hendriks, C., and Meida, L.O. 2001. Carbon dioxide emissions from the global cement industry. Annual Review of Environment and Resources 26: 303-329.
  26. Yuan, J.S., Tiller, K.H., Al-Ahmad, H., Stewart, N.R., and Stewart Jr, C.N. 2008. Plants to power: bioenergy to fuel the future. Trends in Plant Science 13: 421-429. https://doi.org/10.1016/j.tplants.2008.06.001

Cited by

  1. 토양 내 바이오폴리머 혼합에 의한 Camelina sativa L.의 Zn 과잉 스트레스 피해 경감 효과 vol.7, pp.4, 2018, https://doi.org/10.17820/eri.2020.7.4.262