• Title/Summary/Keyword: 급수전개법

Search Result 45, Processing Time 0.026 seconds

Iterative Series Methods in 3-D EM Modeling (급수 전개법에 의한 3차원 전자탐사 모델링)

  • Cho In-Ky;Yong Hwan-Ho;Ahn Hee-Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.70-79
    • /
    • 2001
  • The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.

  • PDF

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Analytical Solution for Long Waves on Axis-Symmetric Topographies (축 대칭 지형 위를 전파하는 장파의 해석해)

  • Jung, Tae-Hwa;Lee, Changhoon;Cho, Yong-Sik;Lee, Jin-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.413-419
    • /
    • 2008
  • In this study, we develop analytical solutions for long waves propagating over several types of axis-symmetric topographies where the water depth varies in an arbitrary power of radial distance. The first type is a cylindrical island mounted on a shoal. The second type is a circular island. To get the solution, the methods of separation of variables, Taylor series expansion and Frobenius series are used. Developed analytical solutions are validated by comparing with previously developed analytical solutions. We also investigate various cases with different incident wave periods, radii of the shoal, and the powers of radial distance.

A Note on Series Approximation of Transition Density of Diffusion Processes (확산모형 전이확률밀도의 급수근사법과 그 계수)

  • Lee, Eun-Kyung;Choi, Young-Soo;Lee, Yoon-Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.383-392
    • /
    • 2010
  • Modelling financial phenomena with diffusion processes is frequently used technique. This study reviews the earlier researches on the approximation problem of transition densities of diffusion processes, which takes important roles in estimating diffusion processes, and consider the method to obtain the coefficients of series efficiently, in series approximation method of transition densities. We developed a new efficient algorithm to compute the coefficients which are represented by repeated Dynkin operator on Hermite polynomial.

Development of Digital Watermark Embedding Algorithm using Fourier Series Expansion (푸리에 급수전개를 이용한 워터마크 삽입 알고리즘의 개발)

  • Min, Jun-Yeong;Choe, Jong-Uk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.6
    • /
    • pp.662-669
    • /
    • 1999
  • Digital watermarking이란 영상이나 비디오, 오디오, 텍스트 등의 저작물에 잘 식별되지 않는 표시를 삽입하여 저작권을 보호하는 방법으로 소유권자의 동의없이 저작물을 배포, 복사되는 것을 방지하는 법이다. 본 논문은 watermark를 삽입하기 위해서 sin과 cos 함수를 이용한 Fourier 급수전개를 이용하였다. 우선 , 원 이미지를 주파수 영역으로 변환한 다음 watermark를 삽입할 위치를 M $\times$Nro의 Random Sequence를 발생하여 결정하였으며, M개의 파형을 가장 직교성이 좋다고 하는 sin 함수와 cos 함수를 이용하여 Fourier 급수전개를 하였다. 이 때, sin과 cos의 n의 고조파 역시 Random Sequence를 발생하여 결정하였다. 제안한 알고리즘은 이와 같이 Fourier 급수전개를 했을 때 각 항의 Fourier 계수를 산출하여 이 Fourier 계수에 watermark를 삽입하였다. 실험 결과 JPEG 압축, Blurring, 노이즈삽입 등의 이미지 왜곡에 대하여 watermark 상관관계가 최소 0.1979에서 최대 0.9732까지의 견고성(robustness)을 보였다.

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Modal Analysis of Eccentric Shells with Fluid-Filled Annulus (유체가 채워진 환형공간을 갖는 편심 원통형 셸의 모드 해석)

  • 정명조;정경훈;박윤원
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.536-550
    • /
    • 2000
  • Inversitgated in this study are the modal characteristics of the eccentric cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier expansion and their results are compared with those of finite element method to verify the validation of the method developed. The effect of eccentricity on the modal characteristics of the shells is investigated using a finite element modeling.

  • PDF

Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method (기하급수 전개법을 이용한 준해석 민감도의 오차 분석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.

Frequency-to-time Transformation by a Diffusion Expansion Method (분산 전개법에 의한 주파수-시간 영역 변환)

  • Cho, In-Ky;Kim, Rae-Yeong;Ko, Kwang-Beom;You, Young-June
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • Electromagnetic (EM) methods are generally divided into frequency-domain EM (FDEM) and time-domain EM (TDEM) methods, depending on the source waveform. The FDEM and TDEM fields are mathematically related by the Fourier transformation, and the TDEM field can thus be obtained as the Fourier transformation of FDEM data. For modeling in time-domain, we can use fast frequency-domain modeling codes and then convert the results to the time domain with a suitable numerical method. Thus, frequency-to-time transformations are of interest to EM methods, which is generally attained through fast Fourier transform. However, faster frequency-to-time transformation is required for the 3D inversion of TDEM data or for the processing of vast air-borne TDEM data. The diffusion expansion method (DEM) is one of smart frequency-to-time transformation methods. In DEM, the EM field is expanded into a sequence of diffusion functions with a known frequency dependence, but with unknown diffusion-times that must be chosen based on the data to be transformed. Especially, accuracy of DEM is sensitive to the diffusion-time. In this study, we developed a method to determine the optimum range of diffusion-time values, minimizing the RMS error of the frequency-domain data approximated by the diffusion expansion. We confirmed that this method produces accurate results over a wider time range for a homogeneous half-space and two-layered model.

TM and TE Modes in Multiple-Ridged Circular Waveguides (다중 Ridge 원형 도파관의 TM과 TE 모우드 해석)

  • 유종원;명노훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.440-446
    • /
    • 1996
  • The multiple-ridged circular waveguides is analyzed using Fourier series and the mode matching technique. The enforcement of the boundary conditions yields the simultaneous equations for the field coefficient inside the waveguides. The simultaneous equations are solved to represent a dispersion relation in an analytic series form. The numerical computation is performed to illustrate the behavior of the cutoff wavenumbers in terms of number, length and angle of ridges. The presented series solution is exact and rapidly-convergent so that it is efficient for numerical computation. A simple dispersion relation based on the dominant mode analysis is obtained and is shown to be very accurate for most practical applications.

  • PDF