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Modal Analysis of Eccentric Shells with
Fluid-Filled Annulus
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ABSTRACT

Investigated in this study are the modal characteristics of the eccentric cylindrical shells with fluid-filled
annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite
Fourier expansion, and their results are compared with those of finite element method to verify the
validation of the method developed. The effect of eccentricity on the modal characteristics of the shells is

investigated using a finite element modeling.
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1. Introduction

A fluid-surrounded cylindrical shells subjected to
various loads have been widely used as structural
components in the engineering design. One example Is
reactor internals such as core barrel and upper structure
barrel coupled with each other by fluid-filled annulus™”,

To assure the reliability of those components and to
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verify structural integrity during normal operations of a
nuclear power plant(m, it is necessary to investigate
extensively flow-induced vibration, necessitating the
investigation of the modal characteristics. Several
monitoring systems such as internal vibration monitoring
system using neutron noise analysis are employed to find
in advance the defect which may cause severe damage
on the reactor internals and steam generator and to take
actions to prevent such damage in time. One of major
causes for accidents is the eccentricity of inner shell
when it is submerged in a fluid which came from the
failure of connections to other major components

Several previous investigations have been performed to
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analyze the free vibration of fluid-filled, coaxial cylindrical
shells® ¥, which were limited to the approximated
methods and could provide only the in-phase and
out-of-phase modes of coaxial shells with small annular
fluid gap compared to the shell diameters, Therefore, an
advanced general theory was developed to calculate the
natural frequencies for all vibrational modes of two
coaxial circular cylindrical shells coupled with fluid®,
Even though coaxial shells are extensively studied very
few studies of eccentric shells are found. Danila et al.'®
suggested a calculating method of the scattered field due
to a plane wave incident on one or several cylindrical
fluid-fluid interfaces using the generalized Debye series
expansion. The theoretical method is applied to a
concentric and a non-concentric fluid shell and then
extended to the multi-layered cylindrical structure.
However, few theoretical studies on the free vibration of
a circular cylindrical shell submerged in a compressible
fluid-filled cylindrical container were taken into
consideration.

This study develops an advanced general theory to
calculate the natural frequencies for all vibrational modes
of two eccentric circular cylindrical shells with fluid-filled
annulus. To support the validity of the proposed theory,
finite element analyses are carried out for various
eccentricities. The effect of eccentricity on the natural
frequencies of the shells is investigated by comparing
frequencies according to the eccentricity.

2. Theory

2.1 Equation of Motion

Consider a circular cylindrical shell with a clamped
boundary condition at both ends, as illustrated in Fig. 1.
The shell can be concentrically or eccentrically submerged
in a fluid-filled container. The cylindrical shell has mean
radius R, height L, and wall thickness %. The Sanders’

shell equationsw' 8

as the governing equations for the
shell where the hydrodynamic effects are considered, can
be written as :
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Fig. 1 Eccentric cylindrical shells with fluid-filled
annulus
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The comma in the equations denotes a partial
derivative with respect to the corresponding variable. For
a complete description of the shell motions, it is necessary
to add boundary conditions to the equations of motion,
Consider the simplest end arrangements of the shell on
the top and bottom supports. At both ends of a
concentrically or eccentrically arranged shell with respect
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to a rigid circular cylindrical container, all the boundary
conditions will obviously hold for the case of SCC
(Sine-Cosine-Cosine) formulation ©:

for the bottom support of the shell,

Mx(0)=Nx(0)=V(0)=W(0)=0, (22)
for the top support of the shell,
M (L)=N, (L)=v(L)=w(L)=0 (2b)

where M, and N, denote the bending moment and

the membrane tensile force, respectively. All geometric
boundary conditions applicable to the clamped-clamped
shell can be reduced to the following equations for the
ends of the shel™:

V) =w(®)=v(L)=w(L)=0 (3)

The relationships between the boundary forces and
displacements are

N, = Dliu,x+£v,9+£wj|
R R |,

(4a)
N =Qil_—u)[l[l—ik]u,‘ﬁ[l+2k)v,x—3k w,xe}
2 R 4 4 s
(4b)
(1-u) (3-u) (2-p)
Qx=K[_ 2le 09T 2Rl; Vg™ Rzu W’xee_w’m}
(4c)
Mx=K[ z(v’s W>99) W’xx:l (4d)

where D= Eh/(1— #%),K= ER/12(1 — %), k= h?/
12R?. N, and Q, denote the membrane shear force

and transverse shear force per unit length, respectively.

2.2 Modal Functions

A general relation for the dynamic displacements in
any vibration mode of the shell can be written in the
following form for the cylindrical coordinate r, q.

u(x, 8,0 = u(x, exp (iwd), (5a)
u(x, 8,8 = v(x, )exp (iwd), (5b)
w(x, 8) = w(x, Dexp (Twd: (5¢)

where  u(x,0), o(x,6), and w(x,8) are modal
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functions corresponding to the axial, tangential, and radial
displacements for the shell, respectively. These modal
functions along the axial direction can be described by a
sum of linear combinations of the Fourier series that are
orthogonal.

u(x,8)= i iAm sin(me)cos né@

n=l s=1 (68.)
o < ST x

vix,0)= B, + ) B, cos|] — ||sinn@

w05 (80 Soco P fsmne

M

w(x,0)=

[Con + icm cos| 2ZX }cos né
1 s=1 L . (6c)

The derivatives of the above modal functions for the

n

shell can be obtained wusing the finite Fourier

11)

transformation'™ The modal functions and their

derivatives of the cylindrical shell were described in

reference(w).

2.3 Equation of Fluid Motion

The inviscid, irrotational and compressible fluid
movement due to shell vibration is described by the
Helmholz equation :

@,

Srr

1 1 1
=B A= D+ B =—,
r r rz 80 xx C2 n : (7)

where ¢ is the speed of sound in the fluid medium
equal to V B/p,, B is the bulk modulus of elasticity of
fluid and p, stands for the fluid density. It is possible to

separate the function @ with respect to x by observing
that, in the axial direction, the rigid surfaces support the
edges of the shell; thus

@(x,r,6,1)= iog(r,0,x)expliot)=ion(r,8) f(x) expl{ivt)
; (8)
where w is the fluid-coupled frequency of .the shell.

Substitution of equation (8) into the partial differential
equation (7) gives

2
T T ) ;
00yt n(rey+ 206 99+(C } n(’,o)— » :’"——Fﬁ\ ,
9
It is possible to solve the partial differential equation

(9) by the separation of the variables. The solution can
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be obtained with respect to the original cylindrical
coordinates, #, 6 and «x: )

ST, @
for 13 > o
| Do Jn(ﬂ} F, Y(ﬂ]
¢(r,9,x)=z o ¢ ¢ sinné
"+ 2 {D.\'n I, (a.m ’)"‘ F,K, (Ocmr)}cos(me)
(10a)
ST @
and for T < c
[ (2]
0(rn6.x)=3%| _ ¢ ¢ sinn@
po +>{D, J,(@,r)+F,¥, (@, r)}cos(me]
s=1
(10b)

where J, and Y, are Bessel functions of the first and
second kinds of order #, whereas In and K, are

modified Bessel functions of the first and second kinds of
order #. ¢ means the spatial velocity potential of the
contained compressible fluid. a,, is related to the speed

of sound in the fluid medium as follows :

2]

The equations (10a) and (10b) automatically satisfy

. =

sn

fors = 1,2 3 .. (1)

the boundary conditions that appear as follows:

(a) impermeable rigid surface on the hottom is

a¢(r,9,x)=0
dx at © x=0 (12)

(b) as there exists no free surface, the axial fluid
velocity at the rigid top is also zero, so

8¢(r,9,x)=0
dx at x=1L. (13)

2.4 General Formulation

For the eccentrically submerged shell, the wvelocity
potential of equations (10a) and (10b) can be
transformed to the shifted cylindrical coordinates, ( a, ¥,

x) by Graf's addition theorem and Beltrami’s theorem
a2

for —2752ﬁ,

{D,," Jw[ﬂ} F, Y(“’—]} J(ﬂe-j
c (o} Cc

$ayw.x)=3 3 |+3{D. 11, (@,0)+ F, K, (@a) } {sinmy

n=1

STX
xI, (ams)cos[—i—-)
(142)
ST @
for 13 < g
{Dm JM[E}FM Y[ﬂ)} J[ﬁj
C c C
play.x)=3 3 |+3{D,J,..(@,0)+F. Y, (@.a)} sinmy
STXx
xjm(ams)cos(T)
(14b)

It is convenient to handle the boundary condition along
the surface of the rigid container when the velocity
potential is transformed from the origin "O" to the
shifted origin "O’”. The radial fluid velocity along the
outer wetted surface of the shell must be identical to
that of the flexible shell, so

a¢(r,9,x): _w(x 9)
ar ' at .r=R (15)

Additionally, the radial fluid velocity along the wetted
surface of the outer rigid container that maintains
eccentricity to the shell must be zero, so

a¢(x’W’a)=0
da at a=R,, (16)

Substitution of equations (6¢), (14a) and (14b) into
equations (15) and (16) gives the relationships:

ST o W
—_ Z_
for 13 c"

(2 )fpur(22)rr(22)

| E a2 RO K., R
s=1

cosnb

M

n

sn

o,
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J ey ]

450,010, R E L, R)}cos[s’zx]

sn ¥ n snin

__Z [C +ZC cos( Lx]] cosn@ (17b)

ST

ST @
forLz

c’

(3) g, (ﬂ){v JM'[“’R J+ F, Y., [“’R" ]}
Cc C c C

2+zmmad%urmwmmmnmm&ﬂo

STX
XCos| —

ST @
for L<c’

(oo

3 |+ 3o @)D, T, @R )+ FaY,.0 @R, )} =0

STx
x cos| ——=

(18b)

(18a)

Now, all unknown coefficients D,,, F,, D and F,
related to the fluid motion will be written in terms of
the coefficients C,, and C,, related to the shell motion

using equations (17a), (17b), (18a) and (18b).

Fon =Wnl Don, (193)
Dy =1 Con, (19b)
F:m =‘[1'|2 Con : (190)
ST, W

For T 2
Em=Wn2 D.m, (19d)
Dsn =1-;n3 C.m‘ (198)
Em =Rn5 cxn . (19f)

540/3t=2 53X 383 X/A 10 | Al 3 &, 2000

T
For L <2

L c

an=Wn3 Dxn, (19g)

Dsn = [:'n4 C:n N (19h)

Em =1—;n6 Csn V (191)
where

A ()
22

(20a)
S @)D, @, R,)}
Wn2= m__“m
;{IM(GSHS)K"+M (@,R,)} . (20p)

X {6,

&), (@, R,)}
W o e

3, @8, @, R,)} (20¢)

m=—co

0 K e o

I, = Wnlpnl, (20e)
L= —!

" a, 1@, R W, K, (e, R)], (20f)
-1

17, (e, R)+W,.Y, (e, R)]. (20g)

L5 =Wl s, (20h)

Ie=W, [:m (201)

As the eccentric distance e approaches zero, J,.(a.,€)
and I,(a.¢e) of equation (20a) ~ (20c) will be zero for
m#F0 and Janme)=L(a,e)=1 for m=0.
Therefore, when e=0, equation (20) for the eccentric
arrangement of the shell obviously reduces to the
equation of the concentric case. The concentrically
submerged shell will be a special case of the shell
submerged eccentrically in a fluid-filled container.

When the hydrostatic pressure on the shell are
neglected for simple formulation, the hydrodynamic
pressure along the outer wetted shell surface can be
given by
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p(x,8,t)=p, 0’6 (R0, x)exp(ia)t)' (21)
Finally, the hydrodynamic force on the shell can be
written as
ST, @
for 13 > .

wR ©R
c {r J(—]H" y[_]}
2 2 D2 o on alYn n2<n
Rpx6.1) p(; 6,t)=—p0a) R Yy ¢ ¢ exp(iw?)

D 2 =
143 €l R+ 1, K (o0, R}
=1

E

(22a)
ST @
for I <
wR o®R
C Pl‘ln_ 1—:12},7(—
R pls0.0)_p.o'R s { (< prer(#) exoion
43 € {0, R, Y (0, R))
(22b)

The dynamic displacements and their derivatives can
be represented by a Fourier sine and cosine series in an
open range of 0<x<L and with the end values using
the finite Fourier transformation(11). Substitution of the
displacements and their derivatives into the governing
Sanders’ shell equation (1a), (1b) and (lc), leads to an
explicit relation for Con and a set of equations for Ag,

B,, and C,, as follows :

B ~ ~
Can] =¥ [uu + ul]+ Y. [vo +V,]+ Ys [Wa + W/]+ Y, [Wo + Wl]
(23)
-AS"
B.m = yS [uo + (_1)mu1]+ y6 [va + (_1)mvl]+ y7 [V~V0 + (—1)”“7)1]
CS'I

+¥s [‘%n +(=D" 5t]

(24)

~ ~ G
where the end values wug, w;, vy, v, wy, wi, Wy,

and  w, in equations (23) and (24) are defined in

(10)

reference . The matrix y,, ¥5, -, ¥g are the derived

column matrices. The equivalent hydrodynamic mass
effect on the shell is included in the coefficient. The
forces N, and @, at the ends of the shells can he
written as a combination of some boundary values of
displacement and their derivatives using equation (4).

The Dboundary values of displacement and their
derivatives, v, vy, 7)0, and ;)1 can be transformed
in a combination of the boundary values of #, w, N,

and @, by equation (4), as written in the form

V, =8 U, + 8 W, + 8 Ny (25a)
V= g+ 8, W+ g Ny (25b)
5o=g4ua+g5wo+g6Ng9+g7Qf, (25¢)
W =g U+ g W+ g Nig+ 2,00 (25d)

where the end values of the forces are defined in
reference(10) and gk (&£ = 1, 2, ... ., 7) can be derived.
Substitution of equation (25) into equations (23) and
(24), gives

B
{C(m:]=z1 [uo +u,]+12 [Wo +W1]

on

+Z, leo +N'16J+z4 lQ;'*'QiJ (26a)

u, +(-D"y,

b S

sn

~[A,] W, +(=D)"W,
sn ik N:e + (—l)mN)l(g
sn Q;; + (_l)mQ)I( . (26b)

O &

where z, (£=1,2,3,4) in equation (26a) are the
derived coefficient matrices, and [Az] (¢ = 1, 2, 3 and
kE =1, 2 3, 4) in equation (26b) is the 4 x 3 derived
coefficients matrix. Eventually, all Fourier coefficients
A, B,, and C,, are rearranged with a combination of
the end point values, as shown in equation (26b).

The geometric boundary conditions that must be
safisfied are associated with the dynamic displacement v
and w as described in equation (3). Hence it follows that

v(o)=gI [BM +§Bm} =0

(272)
v(L)=g {BoﬁgBm (“l)m}zo, (27b)
w(0)=g |:Co,.+gcm}=0’ (27¢)
w(L)= i [B,m + iB (—1)'"} =0 (27d)

Substitution of equation (26) for the coefficients B.,,

stEAgdisaEE X /4 10 A A 3 F, 20000/ 541
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Cop A, B, and C, into the four constraint

conditions that come from the geometric boundary
condition, written as equation (27), leads to a
homogeneous matrix equation by omitting the details :

& € b3 €4 &5 @g €7 €51 W
€1 €n €y €y €y €5 €y x| W | {0}

(4
€y ey ey €y €5 e ey ey ||Ng

1
€ €y €5 €y &5 €5 €5 e4x||Ng

(28)

The elements of the matrix, ez (i = 1, 2, 3, 4 and

E=1 2 .. §) can be obtained from equation (27).
However, when the cylindrical shell is clamped at both
support ends, the associated boundary condition is

u=v=w=w,, =0 at x=0 and L. (29)

Among these boundary conditions, the two geometric
boundary conditions #=0 and ;=0 at x=0 and

x=1L are not automatically satisfied by equation (6),
the modal functions set. Therefore the first, second, third,
and fourth rows of the matrix in equation (28) are

, enforced and the terms associated with e, w#;, w, and
w, are released, The 4X4 frequency determinant is
obtained from equations (28) and (29) by retaining the
rows and columns associated with M, Ny Q° and
Q.. For the clamped boundary condition, the coupled

natural frequencies are numerically obtained from the
frequency determinant :

s €s €7 €3
€5 €y €37 €3 | 0
€35 €3 €33 €3

(30)

€is € €4 Cy

3. Analysis

3.1 Theoretical Analysis
On the basis of the preceding analysis, the frequency

542/8 =438 &3 &S X /4 10 @ A 3 &, 20004

determinant is numerically solved for the clamped
boundary condition in order to find the natural
frequencies of the eccentric circular cylindrical shells with
a fluid-filled annulus. The inner and outer shells are
coupled with a fluid-filled annular gap. The inner
cylindrical shell has a mean radius of 100 mm, a length
of 300 mm, and a wall thickness of 2 mm. The outer
cylindrical shell has a mean radius of 130 mm with the
same length and wall thickness, The physical properties
of the shell material are as follows: Young’s modulus =
69.0 GPa, Poisson's ratio = 0.3, and mass density =
2700 kg/mB. Water is used as the contained fluid with a
density of 1000 kg/ms. The sound speed in water, 1483
m/s, is equivalent to the bulk modulus of elasticity, 2.2
GPa. Dimensions and material properties used for the
analysis are shown in Table 1.

The frequency equation derived In the preceding
section involves the double infinite series of algebraic
terms. Before exploring the analytical method for
obtaining the natural frequencies of the fluid-coupled
shells, it is necessary to conduct convergence studies and
establish the number of terms required in the series
expansions involved. In the numerical calculation, the
Fourier expansion term m is set at 100, which gives an
exact enough solution by convergence, .

3.2 Finite Element Analysis

Finite element analyses using a commercial computer
code ANSYS 55" are performed to verify the analytical
results for the theoretical study. The finite element
method results are wused as the baseline data.
Three-dimensional model is constructed for the finite

Table 1 Dimensions and material properties

. Shell .
Unit Inner | Outer Flud
Length m 0.300 | 0.300
Mean radius m 0.100 | 0130
Thickness m 0.002 | 0.002
Young’'s modulus Pa | 69E9 | 69E9
Poisson’s ratio 0.3 0.3
Density ke/m’ | 2700 | 2700 | 1000
Sound speed m/sec 1483
Bulle modulus of | - p, 2.9E9
elasticity
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Fig. 2 Finite element model of cylindrical shells with fluid-filled annulus

element analysis. The fluid region is divided into a
number of identical 3-dimensional contained fluid
elements (FLUID80) with eight nodes having three
degrees of freedom at each node. The fluid element
FLUID80 is particularly well suited for calculating
hydrostatic pressures and fluid/solid interactions. The
circular cylindrical shell is modeled as elastic shell
elements (SHELL63) with four nodes. The model
has 3840 (radially 4 axially 20 circumferentially 48)
fluid elements and 1920 shell elements as shown in
Fig. 2.

The fluid boundary conditions at the top and bottom of

the tank are zero displacement and rotation. The nodes
connected entirely by the fluid elements are free to move
arbitrarily in three-dimensional space, with the exception
of those, which are restricted to motion in the bottom
and top surfaces of the fluid cavity. The radial velocities
of the fluid nodes along the wetted shell surfaces coincide
with the corresponding velocities of the shells.
Clamped-clamped boundary conditions at both ends are
considered for the inner shell The outer shell is
considered to be rigid with zero displacement and
rotation.

Sufficient number of master degree of freedoms is
selected to calculate 200 frequencies and the reduced
method is used for the eigenvalue and eigenvector
extractions, which employ the Householder-Bisection-
Inverse iteration extraction technique,

4. Results and Discussion

Mode shapes of the fluid-coupled shells are obtained by
the finite element method and typical modes are plotted
in Fig. 3, which shows the deformed mode shape of the
fluid and shell elements for the modes of (1, 3), (2, 4),
(3, 5) and (4, 5).

The frequency comparisons between analytical solution
developed here and finite element method are shown in
Fig. 4 and Table 2 for the eccentricity = 0 %. The
discrepancy is defined as

frequency by FEM - theoretical frequency %

i . 100
iscrepancy(%) frequency by FEM ’ '
(31)
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Fig. 3 Typical mode shapes for eccentricity = 0 %
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Fig. 5 Frequency comparisons for eccentricity =
20%

The largest discrepancy between the theoretical and
finite element analysis results is 27 % for the mode of
(1, 2). Discrepancies defined by equation (31) are always
less than 3 %, therefore the theoretical results agree well
with finite element analysis results, verifying the validity
of the analytical method developed.

Frequency comparisons for the eccentricity of 20 % are
shown in Fig. 5 Not like the case of the 0 %
eccentricity, there are several points to be noted. No (1,
1) mode appeared in the finite element analysis and also
modes of (2, 1), (1, 2) and (2, 2) have rather large
discrepancies even though they are within 10 %. This is
because (1, 1) mode for 0% eccentricity tends to move
to adjacent modes such as (1, 2) or (2, 1) for the case
of the 20 % eccentricity. Also, (1, 3.5) mode of 445 Hz
appeared, which is in progress of moving from (1, 3) to
(1, 4) modes. This kind of trend is more evident as
eccentricity becomes larger as shown in Fig. 6 and 7 for
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Fig. 6 Frequency comparisons for eccentricity = 40%

the eccentricities of 40 % and 60 %, respectively.

The variation of mode shapes with respect to
eccentricity for axial mode m'=1 is shown for the first
12 modes in Fig. 8, which shows that some modes move
to another modes with the change of eccentricity. For
example one pair of (1, 4) mode appeared in the
eccentricity of 40 % or less, but there are two pairs of
(1, 4) modes in the eccentricity of 60 %: one is the
original (1, 4) mode and the other is the mode from (1,
3) of 40 % eccentricity. Also, two pairs of (1, 2) modes
appeared in the eccentricity of 20 %: one is original (1,
2) mode and the other is the mode from (1, 2) mode of
the 0 % eccentricity, This kind of mode movement with
larger eccentricity is the cause of the appearance of
several circumferential mode number of order 0.5, and
also the reason for not appearing of several modes such
as (1, 1) mode for eccentricities of 20 % and (2, 4)

mode for eccentricities of 60 %.
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Fig. 7 Frequency comparisons for eccentricity =
60%

Because there is unsymmetric configuration for shells
with eccentricity, there should be unsymmetric modes for
certain modes. This trend is much more severe with
large eccentricity except for circumferential and/or axial
modes. Two separate values of mode are obtained
especially for axial mode number #<2 in eccentricity =

20 %, n<3 in eccentricity = 40 % and #<5 in
eccentricity = 60 %. Contrary to this, modes for the
eccentricity = 0 % have exactly the same symmetric

mode shapes for all modes as shown in Fig. 9.

Fig. 10 shows the variation of frequency values with
respect to the eccentricity for several modes which are
not much affected by the eccentricity. If there is no
movement of modes with increasing eccentricity, the
effect of eccentricity on the frequencies is almost
negligible, which is especially true for the high
circumferential modes. Therefore the eccentricity is found
to be more effective on the separation of modes or mode

546/8t=2 22X &35S X/4 10 @ A 3 &, 2000

movement from lower to higher circumferential modes
than on the change of the frequencies,

Table 2 Natural frequencies for eccentricity = 0%

Circumferential| Axial Frequency(Hz) |Discrepancy

mode( #) |mode( m’) | Theory | FEM (%)
1 533 528 -0.95

2 1195 1221 2.13

1 3 1975 2015 1.99
4 2744 2738 -0.22

5 3362 3289 -2.22

1 535 521 -2.69

2 1163 1150 -1.13

2 3 1872 1868 -2.14
4 2545 2539 -2.36

5 3177 3101 -2.45

1 469 459 -2.18

2 1021 1004 -1.69

3 3 1680 1659 -1.27
4 2344 2308 -1.56

5 2962 2888 -2.56

1 471 465 -1.29

2 919 908 -1.21

4 3 1503 1484 -1.28
4 2132 2098 -1.62

5 2754 2689 -242

1 612 607 -082

2 937 928 -0.10

5 3 1429 1414 -1.06
4 2005 1976 -1.47

5 2614 2560 -2.11

1 880 876 -0.05

2 1111 1102 -0.08

6 3 1507 1491 -1.07
4 2018 1988 -151

5 2596 2544 -2.04

1 1249 1246 -0.02

2 1427 1416 -0.08

7 3 1747 1726 -1.22
4 2192 2154 ~1.76

5 2729 | 266/8 -2.29

1 1707 1704 -0.18

2 1858 1844 -0.08

8 3 2130 2100 -1.43
4 2520 2471 -1.98

5 3017 2938 -2.69
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Fig. 8 Variation of mode shapes for m=1 with respect to eccentricity
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20% 40% 60% 80%
Fig. 8 Variation of mode shapes for m' =1 with respect to eccentricity (Cont'd)
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5. Conclusions

An analytical method to estimate the coupled
frequencies of the cylindrical shells with fluid-filled
annulus is developed using the series expansion method
based on the Fourier transformation. To verify the
validity of the analytical method developed, finite element
method is used and the frequency comparisons between
them are found to be in good agreement, especially for
the eccentricity of 0 %. With the increasing eccentricity
some modes are separated or mode movement are found,
which is not incorporated in the theoretical development.
This needs to be studied in the future to define more

sophisticated modes such as the circumferential mode of
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order 0.5. But in general the theory developed agrees well
with the finite element method except for several
transition modes which are changing with eccentricity.
The effect of the eccentricity on the frequencies is found
to be more severe on the appearance of transition modes
or disappearance of certain modes rather than on the
frequency changes. Therefore it is recommended to
investigate the modal characteristics rather than
frequency itself to know that how much eccentricity is
there in the shells with fluid-filled annulus.
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