• Title/Summary/Keyword: 근육 분화

Search Result 71, Processing Time 0.032 seconds

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells (단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포)

  • Shin Hyun-Ah;Kim Eun-Young;Lee Keum-Sil;Cho Hwang-Yun;Lee Won-Don;Park Se-Pill;Lim Jin-Ho
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

Dedifferentiated Parosteal Osteosarcoma - A Case Report - (역분화성 방골성 골육종 - 증례 보고 -)

  • Sung, Ki-Sun;Chang, Moon-Jong;Lim, Kyung-Sub
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.13 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • Dedifferentiated parosteal osteosarcoma is an uncommon variant of osteosarcoma. Dedifferentiation is known to be associated with a greater metastatic potential and a more rapid lethal clinical course. Thus recognition of dedifferentiation is important to establish the treatment strategy. But there may be few significant clinical clues to distinguish between dedifferentiated parosteal osteosarcoma and conventional one. A 29-year-old woman presented with 2-year history of discomfort and swelling in her proximal thigh. Examination showed a large, hard, non-mobile mass. Radiographs revealed a large ossified mass attached to the proximal femur. Diagnosis of parosteal osteosarcoma was established by MRI and needle biopsy. But she had a history of abrupt severe thigh pain and increased swelling before surgery. Follow up MRI showed enlargement of mass with invasion to muscle around tumor. The patient underwent an en-bloc resection of tumor and reconstruction. Histological examination showed parosteal sarcoma with dedifferentiation. The patient expired due to local recurrence of tumor and distant lung metastasis 2 months after the surgery. In case with rapid growth of a lesion or unusual severe pain, one must have a high index of suspicion with regard to dedifferentiation.

  • PDF

Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype (세포친화적 하이드로젤의 기계적 물성이 세포 표현형 제어에 미치는 영향)

  • Kim, Do Yun;Park, Honghyun;Lee, Kuen Yong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.412-417
    • /
    • 2015
  • A critical element in tissue engineering approaches is a control of the mechanical properties of polymer scaffolds to regulate cell phenotype, which may lead to clinically successful tissue regeneration. In this study, we hypothesized that gel stiffness could be a key factor to manipulate adhesion and proliferation of different types of cells. RGD-modified alginate gels with various mechanical properties were prepared and used as a substrate for MC3T3-E1 and H9C2 cells. Adhesion and growth rate of MC3T3-E1 cells in vitro were increased in parallel with an increase of gel stiffness. In contrast, those of H9C2 cells were decreased. This approach to control the mechanical properties of polymer scaffolds depending on the cell types may find useful applications in the tissue engineering.

Ultrastructure of the Midgut Epithelial Cells in the Mosquito Larvae, Anopheles sinensis Wiedemann (중국얼룩날개모기 유충내에 있는 중장 상피세포들의 미세구조)

  • Yu, Chai-Hyeock
    • Applied Microscopy
    • /
    • v.34 no.3
    • /
    • pp.199-209
    • /
    • 2004
  • The migut epitheluim of the last instar larva in the mosquito larvae, Anopheles sinensis was observed with electron microscopes. The midgut epitheluim of the mosquito larva is composed of a single-layered columnar absorptive cells, regenerative cells and secretory granular cells. The free surface of the columnar absorptive cells has a regular array of microvilli 'brush border', while cell membranes close to the basal lamina are extrmely infolded and a lot of mitochondria are concentrated in those processes. The columnar absorptive cells also contain cell organelles expected to be found in absorptive cell. Midgut regenerative cells which are positioned basally in the epithelium form the groups, which are called 'nidi', composed of 1 or $2{\sim}3$ cells, they show darker appearance than the columnar absoptive cells. The secretory granular cells contain numerous electron dense granules, $200{\sim}400$ nm in diameter. The cone shaped secretory granular cells are located in the basal portion of the midgut epitheluim. The epithelium is surrounded by the subepithelial space and muscle bundles. The subepithelial space, which is filled with fibrous connective tissue, is innervated by many axon cells and tracheoles.

Immunocytological Studies for the Degeneration of Cranial Myotomes in Xenopus laevis (무미 양서류 Xenopus laevis의 Cranial Myotomes Degeneration에 대한 면역 세포학적 연구)

  • 이상훈;이진표;정해문
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.94-102
    • /
    • 1990
  • In Xenopus laevis the cranial myotomes, W, X, Y and Z represent transient embry-specific structures since they undergo reduction" in the later stage of development. An extensive set of expertmental studies was undertaken in order to discriminate whether the cranial myotomes perform a programmed autonomous death or reduction" by the influence from surrounding tissue such as otic vesicle. Removal of the neighboring otic vesicle did not affect WXYZ degeneration. Grafting the otic vesicle to novel site along the somite file did not induce local myotome degenration. When anterior-most somitic primordia were relocated to the trunk somite region, they underwent reduction eventually. Likewise, with the transplantation of posterior somite forming region into the anterior, autonomous differentiation pafferns were observed. And the cullture of presumptive somitic tissue revealed that WXYZ might degnerate like in vivo. It is therefore concluded that the cranial myotomes of Xenopus laevis exhibit an autonomous cell death during later embryogenesis.yogenesis.

  • PDF

Annual Reproductive Cycle of the Soft Clam, Mya arenaria (우럭, Mya arenaria의 생식연주기)

  • KIM Jin-Hee;YOO Myong-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.656-660
    • /
    • 2001
  • Gametogenesis, the reproductive cycle, and the condition index of the soft clam, Mya arenaria were investigated monthly based on histological observation at Sachon Bay, south coast of Korea from May 1998 to September 1999 . M. arenaria is dioceious. The ovary and testis were composed of a number of ovarian sacs and testicular tubules, respectively. Ripe oocytes were characterized by germinal vesicles with nucleoli, and their sizes about $60{\mu}m$ in diameter. Monthly changes in condition index and water temperature were closely related to the annual reproductive cycle. The reproductive cycle can be classified into 5 stages: early active stage (february to March), late active stage (April to August), ripe stage (September), partially spawned and spent stage (September to October), inactive stage (November and January).

  • PDF

Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes (모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구)

  • Kang, Seok Yong;Hyun, Sun Young;Kwon, Yedam;Park, Yong-Ki;Jung, Hyo Won
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Effects of oxypeucedanin hydrate isolated from Angelica dahurica on myoblast differentiation in association with mitochondrial function (백지에서 추출한 oxypeucedanin hydrate의 미토콘드리아 기능 관련 근생성 효과)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Yoon-Ju Kwon;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • Purpose: Mitochondria play a crucial role in preserving skeletal muscle mass, and damage to mitochondria leads to muscle mass loss. This study investigated the effects of oxypeucedanin hydrate, a furanocoumarin isolated from Angelica dahurica radix, on myogenesis and mitochondrial function in vitro and in zebrafish models. Methods: C2C12 myotubes cultured in media containing 0.1, 1, 10, or 100 ng/mL oxypeucedanin hydrate were immunostained with myosin heavy chain (MHC), and then multinucleated MHC-positive cells were counted. The expressions of markers related to muscle differentiation, muscle protein degradation, and mitochondrial function were determined by quantitative reverse transcription polymerase chain reaction. To investigate the effects of oxypeucedanin hydrate on mitochondrial dysfunction, Tg(Xla.Eef1a1:mito-EGFP) zebrafish embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without oxypeucedanin hydrate and analyzed for mito-EGFP intensity and mitochondrial length. Results: Oxypeucedanin hydrate significantly increased MHC-positive multinucleated myotubes (≥ 3 nuclei) and increased the expression of the myogenic marker myosin heavy chain 4. However, it decreased the expressions of muscle-specific RING finger protein 1 and muscle atrophy f-box (markers of muscle protein degradation). Furthermore, oxypeucedanin hydrate enhanced the expressions of markers of mitochondrial biogenesis (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, transcription factor a mitochondrial, succinate dehydrogenase complex flavoprotein subunit A, and cytochrome c oxidase subunit 1) and mitochondrial fusion (optic atrophy 1). However, it reduced the expression of dynamin-related protein 1 (a mitochondrial fission regulator). Consistently, oxypeucedanin hydrate reduced FOLFIRI-induced mitochondrial dysfunction in the skeletal muscles of zebrafish embryos. Conclusion: The study indicates that oxypeucedanin hydrate promotes myogenesis by improving mitochondrial function, and thus, suggests oxypeucedanin hydrate has potential use as a nutritional supplement that improves muscle mass and function.

Sequence and Expression Analysis of c-fos Proto-oncogene in Korean Cattle (HANWOO) (한우 c-fos 유전자의 염기서열 및 발현분석)

  • Yu, S.L.;Chung, H.J.;Jung, K.C.;Lee, J.H.;Cho, K.W.;Choi, J.G.;Na, K.J.;Sang, B.C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.891-900
    • /
    • 2003
  • Cellular FOS(c-fos) protein is a transcription factor that forms heterodimers mostly with c-jun family and stimulates the transcription of genes containing AP-1 regulatory elements. This c-fos expression can control growth and differentiation of various precursor cells including myoblasts. The controls by c-fos gene have been identified for affecting skeletal muscle fiber traits which are the key determinants of meat quality in pigs. As a first step for identifying the relationship between c-fos gene and meat quality traits in cattle, we fully sequenced 1,443 bp of Hanwoo c-fos mRNA and analyzed expression patterns from various organs and muscle tissues. The sequence identities of Hanwoo c-fos with that of human, pig and mouse showed 89.8%, 93.3% and 87%, respectively. Analyses of the northern blot showed high c-fos expressions were obtained in spleen and rib muscle from 7 organs and 9 different parts of muscles investigated. These results presented here can be used as a valuable marker for meat quality related traits in cattle with further verification.