Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.5.678

Surface maker and gene expression of human adipose stromal cells growing under human serum.  

Jun, Eun-Sook (Medical Research Institute, Pusan National University Hosipital)
Cho, Hyun-Hwa (Department of Physiology, College of Medicine, Pusan National University)
Joo, Hye-Joon (Department of Physiology, College of Medicine, Pusan National University)
Kim, Hoe-Kyu (Department of Physiology, College of Medicine, Pusan National University)
Bae, Yong-Chan (Department of Plastic Surgery, College of Medicine, Pusan National University)
Jung, Jin-Sup (Medical Research Institute, Pusan National University Hosipital)
Publication Information
Journal of Life Science / v.17, no.5, 2007 , pp. 678-686 More about this Journal
Abstract
Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.
Keywords
human adipose stromal cells; human serum; proliferation; surface markers; gene expression profile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Selvaggi, T. A., R. E. Walker and T. A. Fleisher. 1998. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89, 776-779
2 Spees, J. L., C. A. Gregory, H. Singh, H. A. Tucker, A. Peister, P. J. Lynch, S. C. Hsu, J. Smith and D. J. Prockop. 2004. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Molecular therapy 9, 747-756   DOI   ScienceOn
3 Stute, N., K. Holtz, M. Bubenheim, C. Lange, F. Blake and A. R. Zander. 2004. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental hematology 32, 1212-1225   DOI   ScienceOn
4 Tuschong, L., S. L. Soenen, R. M. Blaese, F. Candotti and L. M. Muul. 2002. Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Human gene therapy 1, 1605-1610
5 Van Damme, A., T. Vanden Driessche, D. Collen and M. K. Chuah. 2002. Bone marrow stromal cells as targets for gene therapy. Current gene therapy 2, 195-209   DOI   ScienceOn
6 Van, R. L., C. E. Bayliss and D. A. Roncari. 1976. Cytological and enzymological characterization of adult human adipocyte precursors in culture. The Journal of clinical investigation 58, 699-704   DOI
7 Yamamoto, N., M. Isobe, A. Negishi, H. Yoshimasu, H. Shimokawa, K. Ohya, T. Amagasa and S. Kasugai. 2003. Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. Journal of medical and dental Sciences 50, 63-69
8 Zuk, A. J., M. Zhu, , P. AshjianDe, D. A. Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim and M. H. Hedrick. 2002. Human adipose tissue is a source of multipotent stem cell. Molecular biology cell 13, 4279-4295   DOI   ScienceOn
9 Mackensen, A., R. Drager, M. Schlesier, R. Mertelsmann and A. Lindemann. 2000. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer immunology, immunotherapy 49, 152-156   DOI   ScienceOn
10 Maitra, B., E. Szekely, K. Gjini, M. J. Laughlin, J. Dennis, S. E. Haynesworth and O. N. Koc. 2004. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone marrow transplantation 33, 597-604   DOI   ScienceOn
11 Mezey, E., K. J. Chandross, G. Harta, R. A. Maki and S. R. McKercher. 2000. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow, Science 290, 1779-1782   DOI   ScienceOn
12 Moon, M. H., S. Y. Kim, Y. J. Kim, S. J. Kim, J. B. Lee, Y. C. Bae, S. M. Sung and J. S. Jung. 2006. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular physiology and biochemistry 17, 279-290   DOI   ScienceOn
13 Park, E. K., S. Y. Lee, T. H. Kim, P. H. Choung, G. Khang, Y. S. Son, S. K. Kim and S. Y. Kim. 2005. Effect of Heat Inactivated Autologous Serum on Proliferation and Osteoblastic Differentiation of Human Bone Marrow Stem Cells. Tissue Engineering and Regenerative Medicine 2, 55-61
14 Patricia, A. Z., Z. Min, M. Hiroshi, H. Jerry, F. J. William, J. K. Adam, B. Prosper, L. H. Peter and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue engineering 7, 211-227   DOI   ScienceOn
15 Kievits, F., W. J. Boerenkamp and P. Ivanyi. 1988. H-2-dependent binding of xenogeneic beta 2-microglobulin from culture media. Journal of Immunology 140, 4253-4255
16 Pittenger, M.F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147   DOI   ScienceOn
17 Friedenstein, A. J., J. F. Gorskaja and N. N. Kulagina 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology 4, 267-274
18 Horwitz, E. M., P. L. Gordon, W. K. Koo, J. C. Marx, M. D. Neel, R. Y. McNall, L. Muul and T. Hofmann. 2002. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America 99, 8932-8937   DOI   ScienceOn
19 Kim, S. J., H. H. Cho, Y. J. Kim, S. Y. Seo, H. N. Kim, J. B. Lee, J. H. Kim, J. S. Chung and J. S. Jung. 2005. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and biophysical research communications 329, 25-31   DOI   ScienceOn
20 Kincade, P.W., G. Lee, C. E. Pietrangeli, S. Hayashi and J. M. Gimble. 1988. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annual review of immunology 7, 111-143   DOI   ScienceOn
21 Kuznetsov, S. A., M. H. Mankani and P. G. Robey. 2000. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70, 1780-1787   DOI   ScienceOn
22 Lichtman, M. A. 1981. The ultrastructure of the hemopoietic environment of the marrow: a review. Experimental hematology 9, 391-410
23 Beresford, J. N., J. H. Bennett, C. Devlin, P. S. Leboy and M. E. Owen. 1992. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. Journal of cell science 102, 341-351
24 MacDermott, R. P. and M. J. Bragdon. 1983. Fetal calf serum augmentation during cell separation procedures accounts for the majority of human autologous mixed leukocyte reactivity. Behring Institute Mitteilungen 72, 122-128
25 Allen, T. D., T. M. Dexter and P. J. Simmons. 1990. Marrow biology and stem cells. Immunology 49, 1-38
26 Angelopoulou, M., E. Novelli, J. E. Grove, H. M. Rinder, C. Civin, L. Cheng and D. S. Krause. 2003. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Experimental hematology 31, 413-420   DOI   ScienceOn
27 Brazelton, T. R., F. M. Rossi, G. I. Keshet and H. M. Blau. 2000. From marrow to brain: Expression of neuronal phenotypes in adult mice, Science 290, 1775-1779   DOI   ScienceOn
28 El-Badri, N. S., A. Hakki, S. Saporta, X. Liang, S. Madhusodanan, A. E. Willing, C. D. Sanberg and P. R. Sanberg. 2006. Cord blood mesenchymal stem cells: potential use neurological disorders. Stem cell development 15(4), 495-506
29 Will, R. G., J. W. Ironside, M. Zeidler, S. N. Cousens, K. Estibeiro, A. Alperovitch, S. Poser, M. Pocchiari, A. Hofman and P. G. Smith. 1996. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921-925   DOI   ScienceOn
30 Caplan, A. I. 1991. Mesenchymal stem cells. Journal of orthopaedic research 9, 641-650   DOI