Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.3.412

Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype  

Kim, Do Yun (Department of Bioengineering, Hanyang University)
Park, Honghyun (Department of Bioengineering, Hanyang University)
Lee, Kuen Yong (Department of Bioengineering, Hanyang University)
Publication Information
Polymer(Korea) / v.39, no.3, 2015 , pp. 412-417 More about this Journal
Abstract
A critical element in tissue engineering approaches is a control of the mechanical properties of polymer scaffolds to regulate cell phenotype, which may lead to clinically successful tissue regeneration. In this study, we hypothesized that gel stiffness could be a key factor to manipulate adhesion and proliferation of different types of cells. RGD-modified alginate gels with various mechanical properties were prepared and used as a substrate for MC3T3-E1 and H9C2 cells. Adhesion and growth rate of MC3T3-E1 cells in vitro were increased in parallel with an increase of gel stiffness. In contrast, those of H9C2 cells were decreased. This approach to control the mechanical properties of polymer scaffolds depending on the cell types may find useful applications in the tissue engineering.
Keywords
hydrogel; stiffness; alginate; adhesion; proliferation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Langer and J. P. Vacanti, Science, 260, 920 (1993).   DOI
2 R. Langer and D. A. Tirrell, Nature, 428, 487 (2004).   DOI   ScienceOn
3 K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001).   DOI   ScienceOn
4 F. Brandl, F. Sommer, and A. Goepferich, Biomaterials, 28, 134 (2007).   DOI   ScienceOn
5 A. Curtis and M. Riehle, Phys. Med. Biol., 46, R47 (2001).   DOI   ScienceOn
6 A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell, 126, 677 (2006).   DOI   ScienceOn
7 N. Huebsch, P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney, Nature Mater., 9, 518 (2010).   DOI   ScienceOn
8 K. Y. Lee and Y. S. Yuk, Progr. Polym. Sci., 32, 669 (2007).   DOI   ScienceOn
9 J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).   DOI   ScienceOn
10 A. S. Hoffman, Adv. Drug Deliv. Rev., 54, 3 (2002).   DOI   ScienceOn
11 N. A. Peppas, Adv. Mater., 18, 1345 (2006).   DOI   ScienceOn
12 L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey, Neuroreport, 13, 2411 (2002).   DOI   ScienceOn
13 A. J. Engler, M. A. Griffin, S. Sen, C. G. Bonnetnann, H. L. Sweeney, and D. E. Discher, J. Cell Biol., 166, 877 (2004).   DOI   ScienceOn
14 A. Garcia and C. Reyes, J. Dental Res., 84, 407 (2005).   DOI
15 P. Lehenkari and M. Horton, Biochem. Biophys. Res. Comm., 259, 645 (1999).   DOI   ScienceOn
16 L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith, J. Cell Sci., 115, 1423 (2002).
17 K. Y. Lee, H. J. Kong, and D. J. Mooney, Macromol. Biosci., 8, 140 (2008).   DOI   ScienceOn
18 P. C. Georges and P. A. Janmey, J. Appl. Physiol., 98, 1547 (2005).   DOI   ScienceOn
19 W. R. Gombotz and S. F. Wee, Adv. Drug Deliv. Rev., 64, 194 (2012).   DOI   ScienceOn
20 H. H. Tonnesen and J. Karlsen, Drug Develop. Ind. Pharm., 28, 621 (2002).   DOI   ScienceOn
21 K. Y. Lee and D. J. Mooney, Progr. Polym. Sci., 37, 106 (2012).   DOI   ScienceOn
22 G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, FEBS Letters, 32, 195 (1973).   DOI   ScienceOn
23 J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999).   DOI   ScienceOn
24 J. L. Drury, R. G. Dennis, and D. J. Mooney, Biomaterials, 25, 3187 (2004).   DOI   ScienceOn
25 A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, and A. Khademhosseini, Acta Biomater., 7, 1441 (2011).   DOI   ScienceOn
26 K. Y. Lee, J. A. Rowley, P. Eiselt, E. M. Moy, K. H. Bouhadir, and D. J. Mooney, Macromol., 33 4291 (2000).   DOI   ScienceOn