DOI QR코드

DOI QR Code

Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype

세포친화적 하이드로젤의 기계적 물성이 세포 표현형 제어에 미치는 영향

  • Kim, Do Yun (Department of Bioengineering, Hanyang University) ;
  • Park, Honghyun (Department of Bioengineering, Hanyang University) ;
  • Lee, Kuen Yong (Department of Bioengineering, Hanyang University)
  • Received : 2014.08.07
  • Accepted : 2014.11.03
  • Published : 2015.05.25

Abstract

A critical element in tissue engineering approaches is a control of the mechanical properties of polymer scaffolds to regulate cell phenotype, which may lead to clinically successful tissue regeneration. In this study, we hypothesized that gel stiffness could be a key factor to manipulate adhesion and proliferation of different types of cells. RGD-modified alginate gels with various mechanical properties were prepared and used as a substrate for MC3T3-E1 and H9C2 cells. Adhesion and growth rate of MC3T3-E1 cells in vitro were increased in parallel with an increase of gel stiffness. In contrast, those of H9C2 cells were decreased. This approach to control the mechanical properties of polymer scaffolds depending on the cell types may find useful applications in the tissue engineering.

조직공학에 있어서 고분자 지지체의 물성은 세포의 부착, 이동, 성장 및 분화에 영향을 미치는 중요한 요소 중 하나이다. 이 논문에서는 다양한 강성을 가지는 세포 친화적인 알긴산 하이드로젤을 제조하고 골모세포(MC3T3-E1)와 심근세포(H9C2)를 2차원 배양한 후, 각 세포의 부착 및 성장을 연구하였다. 골조직에서 유래한 MC3T3-E1 세포는 하이드로젤의 강성도가 증가함에 따라 성장이 촉진되었지만 근육조직 유래의 H9C2 세포는 오히려 감소하였다. 재생하고자 하는 조직의 종류에 따라 지지체의 기계적인 물성을 변화시켜서 세포의 부착 및 성장을 제어하는 것은 조직공학적으로 조직 및 장기를 개발하는 데 있어서 중요한 역할을 할 것이다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  2. R. Langer and D. A. Tirrell, Nature, 428, 487 (2004). https://doi.org/10.1038/nature02388
  3. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001). https://doi.org/10.1021/cr000108x
  4. F. Brandl, F. Sommer, and A. Goepferich, Biomaterials, 28, 134 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.017
  5. A. Curtis and M. Riehle, Phys. Med. Biol., 46, R47 (2001). https://doi.org/10.1088/0031-9155/46/4/201
  6. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell, 126, 677 (2006). https://doi.org/10.1016/j.cell.2006.06.044
  7. N. Huebsch, P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney, Nature Mater., 9, 518 (2010). https://doi.org/10.1038/nmat2732
  8. K. Y. Lee and Y. S. Yuk, Progr. Polym. Sci., 32, 669 (2007). https://doi.org/10.1016/j.progpolymsci.2007.04.001
  9. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5
  10. A. S. Hoffman, Adv. Drug Deliv. Rev., 54, 3 (2002). https://doi.org/10.1016/S0169-409X(01)00239-3
  11. N. A. Peppas, Adv. Mater., 18, 1345 (2006). https://doi.org/10.1002/adma.200501612
  12. L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey, Neuroreport, 13, 2411 (2002). https://doi.org/10.1097/00001756-200212200-00007
  13. A. J. Engler, M. A. Griffin, S. Sen, C. G. Bonnetnann, H. L. Sweeney, and D. E. Discher, J. Cell Biol., 166, 877 (2004). https://doi.org/10.1083/jcb.200405004
  14. A. Garcia and C. Reyes, J. Dental Res., 84, 407 (2005). https://doi.org/10.1177/154405910508400502
  15. P. Lehenkari and M. Horton, Biochem. Biophys. Res. Comm., 259, 645 (1999). https://doi.org/10.1006/bbrc.1999.0827
  16. L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith, J. Cell Sci., 115, 1423 (2002).
  17. K. Y. Lee, H. J. Kong, and D. J. Mooney, Macromol. Biosci., 8, 140 (2008). https://doi.org/10.1002/mabi.200700169
  18. P. C. Georges and P. A. Janmey, J. Appl. Physiol., 98, 1547 (2005). https://doi.org/10.1152/japplphysiol.01121.2004
  19. W. R. Gombotz and S. F. Wee, Adv. Drug Deliv. Rev., 64, 194 (2012). https://doi.org/10.1016/j.addr.2012.09.007
  20. H. H. Tonnesen and J. Karlsen, Drug Develop. Ind. Pharm., 28, 621 (2002). https://doi.org/10.1081/DDC-120003853
  21. K. Y. Lee and D. J. Mooney, Progr. Polym. Sci., 37, 106 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.003
  22. G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, FEBS Letters, 32, 195 (1973). https://doi.org/10.1016/0014-5793(73)80770-7
  23. J. L. Drury, R. G. Dennis, and D. J. Mooney, Biomaterials, 25, 3187 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.002
  24. A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, and A. Khademhosseini, Acta Biomater., 7, 1441 (2011). https://doi.org/10.1016/j.actbio.2011.01.011
  25. K. Y. Lee, J. A. Rowley, P. Eiselt, E. M. Moy, K. H. Bouhadir, and D. J. Mooney, Macromol., 33 4291 (2000). https://doi.org/10.1021/ma9921347
  26. J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999). https://doi.org/10.1016/S0142-9612(98)00107-0

Cited by

  1. Synthesis of a glucose oxidase-conjugated, polyacrylamide-based, fluorescent hydrogel for a reusable, ratiometric glucose sensor vol.7, pp.43, 2016, https://doi.org/10.1039/C6PY01120A
  2. Substance-P and transforming growth factor-β in chitosan microparticle-pluronic hydrogel accelerates regenerative wound repair of skin injury by local ionizing radiation pp.19326254, 2018, https://doi.org/10.1002/term.2445
  3. Enhanced Cell Proliferation and Osteogenesis Differentiation through a Combined Treatment of Poly-L-Lysine-Coated PLGA/Graphene Oxide Hybrid Fiber Matrices and Electrical Stimulation vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/5892506