• Title/Summary/Keyword: 균질기

Search Result 299, Processing Time 0.026 seconds

Using Two-Dimensional Chemiluminescence Images to Study Inhomogeneity in Mixture Gas in the Combustion Chamber for HCCI Combustion (이차원발광화상계측에 의한 예혼합압축자기착화연소의 연소실내 혼합기의 불균질성에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1043-1050
    • /
    • 2010
  • Fuel stratification and thermal stratification occur in the HCCI combustion chamber on a microscopic scale. They affect the ignition and combustion processes. In this study, the effect of the inhomogeneity in the mixture gas on the HCCI combustion process was investigated. Two-dimensional chemiluminescence images were captured using a framing camera to evaluate the flame structure. DME was used as the test fuel. First, the effect of inhomogeneity in the fuel distribution in the premixture was investigated for the four-stroke optically accessible engine. Then, by comparing the combustion of the homogeneous mixture in the rapid compression machine, which does not contain any residual gas, with the combustion in the four-stroke engine, the effect of inhomogeneity in temperature due to the residual gas was analyzed. The results showed that a time lag appears spatially in combustion under inhomogeneous conditions in the four-stroke engine. The spatial variation in the combustion without the residual gas in the rapid compression machine is less than that in the combustion in the four-stroke engine.

The Reconstruction of Tomographic Images using STAM System (STAM 시스템을 이용한 토모그라픽 영상 복원)

  • Hwang, Ki-Hwan;Kim, Hyun;Kim, Jong-Chan;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.88-92
    • /
    • 1998
  • 본 논문에서는 다층구조물에 대한 토모그라픽 영상을 복원하기 위해 기존의 SLAM 시스템에 쿼드러쳐 검출기와 시료회전장치를 부가하여 STAM 시스템을 구성하고 BFP 알 고리즘을 이용하여 영상복원 프로그램을 개발하였다. 본 실험에서는 시료로서 알루미늄을 사용하여 2개 층이 서로 다른 패턴을 갖는 불균질 층을 만들고 그 사이를 물로써 채워진 다 층구조물을 구성하였으며 또한 불균질 층 간격을 각각 8λ, 10λ 그리고 12λ가 되도록 제 작하였다. 이들 시료는 STAM 시스템에서 4중 프로젝션(0°, 90°, 180°, 270°)시켜 토모 그라픽 데이터를 획득하고 이를 영상처리하여 토모그라픽 영상을 복원하였다. 영상분석 결 과, 본 STAM 시스템은 4중 프로젝션시 12λ의 불균질 층 간격에서 높은 분해능의 토모그 라픽 영상을 얻을 수 있었고 각 층에 대한 위치를 결정할 수 있었다.

  • PDF

Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth (균질대지에 대한 시간영역 유도분극법에 전자기결합)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.193-197
    • /
    • 1986
  • A simple and fast solution is derived to evaluate the effects of time-domain electromagnetic coupling in induced polarization surveys on a uniform earth. The simplified solution gives an explicit statement of the dependence of time-domain electromagnetic coupling on the model parameters, and yields sufficiently accurate results for most situations encountered in practice. The co-linear dipole-dipole and Wenner arrays are used as examples in this paper, but th numerical solution can be applied to any electrode configuration.

  • PDF

고순도게르마늄(HPGe) 검출기를 이용한 방사성폐기물 드럼의 핵종농도 평가

  • 박경록;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.583-589
    • /
    • 1996
  • 원자력발전소에서 발생되는 방사성폐기물들은 폐기물형태 및 방사능 농도가 다양하며 영구처분장으로 이송전까지는 발전소내의 임시 저장고에 안전하게 보관, 관리하고 있다. 생성된 폐기물드럼내에는 감마방출핵종을 비롯하여 알파 및 베타방출 핵종들이 균질 또는 비균질하게 존재하고 있으며 방사능의 세기나 폐기물의 특성에 따라 안정화시키거나 압축처리하여 드럼에 담겨져 있기 때문에 일반적인 파괴분석에 의한 화학분석법으로는 작업자의 피폭, 시료의 대표성 선정 및 장시간의 화학처리 시간소요 등으로 핵종분석이 곤란하다. 따라서 본 논문은 일반적으로 감마핵종분석시 흔히 사용하고 있는 고순도게르마늄(HPGe) 검출기를 이용하여 드럼의 감마핵종농도를 분석하는 방법과 장치의 개발에 대해 언급하였으며 알파나 베타핵종과 같이 직접 분석이 곤란한 핵종들은 각 폐기물드럼내에 존재하는 Co-60이나 Cs-137과의 상관관계를 미리 예측한 척도인자 (scaling factor)를 이용하여 간접적으로 구하는 방법을 사용하고 있으나 본 논문에서는 드럼으로부터 감마핵종만을 분석하는 방법에 대해서만 언급하였다. 또한 핵종분석시스템의 최적 운전조건을 도출하기 위해 드럼회전테이블의 속도결정 및 모의드럼을 이용한 방사능측정 등을 통해 핵종 농도 분석시의 오차를 30% 이내로 유지할 수 있었다.

  • PDF

Optimization and Scale-up of Fish Skin Peptide Loaded Liposome Preparation and Its Storage Stability (어피 펩타이드 리포좀 대량생산 최적 조건 및 저장 안정성)

  • Lee, JungGyu;Lee, YunJung;Bai, JingJing;Kim, Soojin;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2017
  • Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at $4^{\circ}C$. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Design and Performance Evaluation of Dimpled EGR Cooler (딤플형 EGR 냉각기의 설계 및 성능평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2010
  • A conventional EGR cooler, which is used in an EGR system of an automobile diesel engine, has a low heat-exchange efficiency. To maximize the heat transfer between the exhaust gas and coolant, dimples are formed on the surface of heat exchange tubes. When designing the dimpled EGR cooler, the net heat transfer areas in the conventional and dimpled tube-type EGR coolers are compared. Structural integrity evaluations are also performed by combining finite element analysis with a homogenization method. Subsequently, the process of manufacturing the dimpled tube, i.e., the formation of dimples, edge bending, center v-notch bending, compression, and plasma welding, is established and carried out. Thus, the dimpled EGR cooler is developed, and its performance is verified.

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

A Study on Correlation Between Separation and Orientation of Fibres During Compression Molding of Long Fibre-Reinforced Polymeric Composites (장섬유강화 고분자복합판의 압축성형에 있어서 섬유의 분리와 배향의 상관관계에 관한 연구)

  • 이동기;유정훈;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 1993
  • During compression molding of fibre-reinforced thermoplastics, the two main problems such as the fibre-matrix separation and the fibre orientation are produced by the flow state. As the molded product tends to be nonhomogeneous and anisotropic due to the separation and the orientation, it is necessary to clarify these in relation to the molding process variables and the fibre structure (fibre entanglement). If the entanglement of fibre structure is strong, the separation increases and the orientation is not easily aligned. Namely, these are inseparably related to each other. The correlation between the separation and the orientation have to be clarified for designing the fibre structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scanner. Correlation between the degree of nonhomogeneity and the orientation function is discussed.