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Time-Domain Electromagnetic Coupling in Induced
Polarization Surveys on a Uniform Earth
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Abstract: A simple and fast solution is derived. to evaluate the effects of time-domain electromag-

netic coupling in induced polarization surveys on a uniform earth. The simplified solution gives

an explicit statement of the dependence of time-domain electromagnetic coupling on the ‘model pa-

rameters, and yields sufficiently accurate results for most situations encountered in practice. The co-

linear dipole-dipole and Wenner arrays are used as examples in this paper, but the numerical solu-

tion can be applied to any electrode configuration.

INTRODUCTION

One of the major problems in interpretation
of induced polarization (IP) data is spurious
responses caused by electromagnetic (EM) cou-
pling. For a co-linear dipole-dipole array over
conductive earth, both EM coupling and polar-
izable material have effects to decrease the ap-
parent resistivity as the frequency is increased.

Dey and Morrison (1973) developed a method
of computing EM coupling over a layered earth
in the frequency domain, and they also estimated
time-domain coupling using the fast Fourier trans-
form. However, especially in the time domain,
their method requires a relatively complex pro-
cedure and a large computer time. In this paper,
a fast and simple procedure is derived to estimate
the time-domain EM coupling on a uniform
earth.

The starting point of this study is the coupling
response between parallel lines on a uniform
earth given by Yost (1952). Since the Yost’s so-
lution has a problem of indeterminate in colinear
arrays, it is modified to able to apply to any

electrode configuration in this paper. The time-
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domain EM coupling is studied by computing the
voltage recorded at a receiving line during the
off-time of current puls applied to a transmitting
line. In this paper, the co-linear dipole-dipole and
Wenner arrays are used as examples, and periodic
square-wave and periodic alternating square-wave

currents are assumed.

EM COUPLING

The response of time-domain EM coupling for
parallel lines on a uniform earth is given by Yost
(1952). The coupling response is valid for the
quasi-static case in which capacitive earth cur-
rents are considered to be negligible compared to
conductive earth currents and the impressed cur-
rent is considered to be constant along the length
of line. Fig. 1 shows the line are parallel to
the z-axis and two are separated by a distance
y in the y-axis. For this case, a voltage V(¢)

measured at the receiving line is

VO =Ve— L 5% S
O omy? &= A

(rijerf(gri;) —exp(—g¥y® zierf (gz:)], (1)
where V, is the steady-state value of V (), I
the magnitude of current, p the resistivity of
uniform earth, g®=my/(4pt), m, the inductivity

of free space, and ¢ the time measured from the
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Fig. 1 Line arrangement for Yost’s model (1952).

instant the current is stepped. The distances z;;
and r;; are respectively
z;;=|C;—P;|, @)

and
ri=(y*+z%)1?, 3
i=1 and 2, and j=1 and 2,
where C and P denote positions of current and

potential electrode, respectively, and the error
function erf(z) is defined by

erf(2)= % f :exp( —a?) da. 4)

In applying (1), there are no restrictions on
the geometric arrangement of lines, except that
the current carrying line must be parallel to volt-
age measuring line. However, in co-linear cases
such as Wenner and dipole-dipole arrays, where
¥=0, (1) becomes indeterminate. The difficulty
can be overcome by a series expansion of the
error function terms in (1). The series expan-
sion of the error function is given by (Abramo-
witz and Stegun, 1972, p. 297)

2kz2k+1
k+1) "
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erf(z)—v‘_exp( zZ)Z(}) Ta

A substitution of (5) into (1) yields

2 2
Vi)=V,~ 3/2y2 ‘Zl 12;1( 1) #exp(g2ryii)
i 2" 2k (R+1) 2 (k+1)
= (2k+ 1) [7‘ —Z3; ]
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When y=0, (6) is

2 2 .
V) =V,— pff’z 2 3 (— D *exp(—g'al)
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By using (7), one can evaluate the time-domain
EM coupling for all co-linear arrays.

In order to obtain a more simplified solution,

let’s expand the exponential function term in
:
1 2 :
VO=Vo— 553 B
[14+Lgzaz— Lgtat 1.3 ®)
3Ty T
Since g is small enough in most practical cases,

the terms higher than g? are negligible, i.e.,
V(t)—VO_" '3‘/‘2" Z Z( 1>'+J[1+ gzxul

©)}
The effect of coupling response can be shown
by a relative decay voltage, which is a normal-
ized voltage recorded at the receiving line during
the on- and off-time of the current pulse applied
to the transmitting line (Dey and Morrison, 1973).
A ratio of transient off-time'response to steady-
state on-time response, R(¢), indicates a coupling
effect of the underlying homogeneous half-space,
ie.,
R®O=[V(®)—V,)/ Vo (10)
Fig. 2 shows typical waveforms used in the
time-domain IP measurement (Sumner, 1976).
For the periodic square-wave current, the relative
decay voltage V,(¢) is written by

Vi) :k};’[—-R(tJrkT) +Re+ R+ ],

an
and for the periodic alternating square-wave

current,



Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth 195

CURRENT
A =T —»
I
0 TIME
e
I
8] -
-1k
Fig. 2 Current waveforms used in time domain IP
measurements: Square-wave current (upper)

and alternating square-wave current (lower).
K
Ve@®) =3[ ~RU+ET) +R -+ b+ T)]

+R<t+(k+§—T) —R(t+(k+7?£—T)],

(12)
where T is the current period. In (11) and (12),
K=2 is adequate in most practical cases.

RELATIVE DECAY VOLTAGE

In this section, the simplified? solutions.iare
derived for the co-linear dipole-dipole and Wen-
ner arrays as shown in Fig. 3, and a few nu-

merical results are shown.

Dipole-dipole array:

For the co-linear dipole-dipole array shown in
Fig. 3,
spectively

T =ZTyp=(n1+1)a,

z1,=(n+2)a,
and

Zy=na, 13)
and the steady-state voltage V, is

Vo=—1Ip/(man(n+1) (n+2)], (14
where a is the dipole length and # is the dipole
separation. By using (9), (13) and 14, o

the distances between electrodes are re-

can be written as

R(t)=bn(n+1) (n+2)a3/ (pt)32, (15)
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Fig. 3 Array configurations: Dipole-dipole array (up-
per) and Wenner array (lower).
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Fig. 4 Relative decay voltages for a periodic square-
wave current on a uniform earth. Open circles
indicate the results of Dey and Morrison(1973).

where

b=—2x/(3 y/10) X 1071°=—0. 6623 X 1071°,
From (15), one can easily find the dependence
of R(2) on n, a, p and ¢ for the co-linear di-
pole-dipole array.

The relative decay voltage V,(¢) for the pe-
riodic squarewave current, for example, is com-
puted by substituting (15) into (11). Fig. 4
shows V,(¢) for the case considered by Dey and
Morrison (1973). A fairly good agreement with
the Dey and Morrison’s result suggests that (15)
has a reasonable accuracy. In the following, three
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Fig. 5 Relative decay voltages for different dipole
separations (n=1,2, 3,4 and 5) over a uniform

earth.
0
10 T T T
o T =4 (sec)
10 P =50 (@m) N
=3

RELATIVE DECAY VOLTAGE

0 0.25 0.5 0.75 1.0

OFF TIME (sec)
Fig. 6 Relative decay voltages for different dipole

lengths (=100, 150, 200, 300 and 400 m)
over a uniform earth.
examples are shown to understand the effects of
n, a and p to the responses of EM coupling.
These results are computed for the periodic al-
ternating square-wave current which is most
usually used in time-domain IP measurements
(Sumner, 1976).
Fig. 5 shows the effect of dipole separations
(n=1, 2, 3, 4 and 5) to the time-domain EM
coupling over a uniform earth of resistivity p=
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Fig. 7 Relative decay voltages for different resistiv-

ities (p=10, 30, 50, 100 and 500 2.m) of
half-space.
50 2-m for a dipole length a=200m. As one
normally expects, the coupling responses are
higier for larger dipole separations. Especially in
short off-times, the shorter the dipole separation,
the sharper the decay rate.

Fig. 6 shows the effect of dipole lengths (a=
100, 150, 200, 300 and 400 m) to the time-
domain EM coupling over a uniform earth of
resistivity p=50 £2+m for a dipole separation n—
3. The increase in the coupling effect is signif-
icant as the dipole length is increased from 100
m to 400 m. The selection of a proper value of
a is of prime importance in IP survey, because
the larger the a, the greater the depth of explo-
ration. However, Fig. 6 indicates that for a
normally resistive ground, the coupling response
with large a at long off-times overshadow the
normal polarization decay of a mineralized inho-
mogeneity.

Fig. 7 shows the effect of resistivities (o=10,
30, 50, 100 and 500 2-m) of the uniform half-
space to the EM coupling for a dipole length
a=200 m and a dipole separation #=3, The rel-
ative decay voltage decreases as the resistivity

of half-space is increased. While the relative
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sharpness of the decay in short off-time (shorter
than 0.5 sec) increases with an increase in the
resistivity of half-space.

Wenner array:
For the Wenner array shown in Fig. 3, the
steady-state voltage V, is

Vo=Ip/ 2na). (16)
Substitution of (9) and (16) into (10) yield

R(t)=ca®/ (pt)37?, a7
where

c=4z/ /10X 1079=3, 9738 X 1071,

It should be noted that (17) gives an explicit
statement of the dependence of R(¢) on ¢, p
and ¢, and it is remarkably simple. Since (15)
and (17) are very similar to each other, the
time-domain EM response for the Wenner array
can easily be deduced by that for dipole-dipole
array. Hence the EM response for the Wenner
array is not shown in this paper.

CONCLUSIONS

A simple and fast solution to estimate the time-
domain EM coupling between parallel lines on
a uniform earth has been developed by modifying
the Yost's solution (1952). The Yost’s solution
is inadequate for the co-linear array, but the

solution presented herecan be used for any array.

In addition, the simplified solutions (15) and
(17) gives an explicit statement of the depend-
ence of EM coupling on model parameters, and
yield sufficiently accurate results for most situa-
tions encountered in practice. The results for the
periodic square-wave current are in good agree-

ment with the results of Dey and Morrison (1973).
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