Effect of Inhomogeneity correction for lung volume model in TPS

Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과

  • Chung SeYoung (Department of Radiation Oncology, Anam Hospital, Korea Univ. Medical Center) ;
  • Lee SangRok (Department of Radiation Oncology, Anam Hospital, Korea Univ. Medical Center) ;
  • Kim YoungBum (Department of Radiation Oncology, Anam Hospital, Korea Univ. Medical Center) ;
  • Kwon YoungHo (Department of Radiation Oncology, Anam Hospital, Korea Univ. Medical Center)
  • 정세영 (고려대학교의료원 안암병원 방사선종양학과) ;
  • 이상록 (고려대학교의료원 안암병원 방사선종양학과) ;
  • 김영범 (고려대학교의료원 안암병원 방사선종양학과) ;
  • 권영호 (고려대학교의료원 안암병원 방사선종양학과)
  • Published : 2004.03.01

Abstract

Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

서론 : 폐암환자의 방사선치료계획 시 불균질 조직 보정(inhomogeneity correction)을 평가하기 위해 폐(lung), (bone) 그리고 뼈를 고정시키기 위해 사용하는 고밀도 물질인 steel 등을 포함한 불균질 조직 보정 팬텀(inhomogeneity correction phantom, ICP)을 자체 제작하였다. 이를 이용하여 방사선치료계획시스템에서 불균질조직 보정 알고리듬에 따른 값들을 비교하고, 또한 실제 측정된 값과 비교, 분석하여 불균질 조직에 따른 선량계산 변화를 평가하고자 하였다. 대상 및 방법 : 영상획득은 전산화단층촬영영상장치(CT, Volume zoom, Germany)와 자체 제작한 불균질 조직 보정팬텀(ICP, pig's vertebra, steel(8.21 g/cm3), cork(0.23 g/cm3))을 사용하였다. 방사선치료계획시스템으로는 Marks Plan(2D)과 XiO(CMS, USA, 3D)를 사용하였고, 측정값과의 비교를 위해서는 선형가속기(CL/1800, Varian, USA)와 이온전리함을 사용하였다. 전산화단층촬영영상장치로부터 획득한 영상을 이용하여 방사선치료계획장치에서 관심점(interest point, IP)에서의 점선량(point dose)과 선량분포를 얻고, 이와 동일한 조건에서 측정을 수행한 후 비교, 분석하였다. 그리고 불균질 조직 보정 알고리듬 사용 유무에 따른 차이와 방사선치료계획장치가 가지고 있는 다양한 불균질 조직 보정 알고리듬 간의 차이도 비교하였다. 결 과 : 불균질 조직 보정 팬텀 내 관심지점에 대한 측정치와 방사선치료계획장치에서 얻은 균질과 불균질 보정된 값을 비교한 결과 폐 제1지점에서의 측정치와 불균질 보정값의 오차는 2D에서 $0.8\%$, 3D에서 $0.5\%$, 스틸 제1지점에서의 측정치와 불균질 보정값의 오차는 2D에서 $12\%$, 3D에서 $5\%$의 오차를 보이나 보정을 하지 않은 값과 측정치의 오차는 각각 $16\%,\;14\%$의 오차가 나는 것을 알 수 있었다. 또한 2D에서 보다는 3D에서의 값들이 오차가 적은 것으로 나타났다. 결 론 : 방사선치료계획 시 조직 내 밀도에 따른 보정이 반드시 이루어져야 하며 보다 정확한 치료계획을 위해서는 2차원 방사선치료계획용 시스템보다는 3차원 방사선치료계획용 시스템을 사용하는 것이 정확한 보정이 가능한 것을 알 수 있었다. 그리고 불균질 조직 보정 알고리듬 간에도 차이가 있어 실제 측정을 통해 가장 적합한 불균질 조직 보정 알고리듬을 선택하는 것이 필수적이라 할 수 있다. 향후 열형광선량계와 필름 선량계를 통한 비교, 분석이 추가적으로 수행되어야 할 것으로 사료된다.

Keywords