DOI QR코드

DOI QR Code

Optimization and Scale-up of Fish Skin Peptide Loaded Liposome Preparation and Its Storage Stability

어피 펩타이드 리포좀 대량생산 최적 조건 및 저장 안정성

  • Lee, JungGyu (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, YunJung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Bai, JingJing (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Soojin (Materials Science laboratory R&D Center, Dyne soze additives and ingredients) ;
  • Cho, Youngjae (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Choi, Mi-Jung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 이중규 (건국대학교 축산식품생명공학과) ;
  • 이윤정 (건국대학교 축산식품생명공학과) ;
  • 백정정 (건국대학교 축산식품생명공학과) ;
  • 김수진 ((주)다인소재 소재과학연구소) ;
  • 조영재 (건국대학교 축산식품생명공학과) ;
  • 최미정 (건국대학교 축산식품생명공학과)
  • Received : 2017.10.16
  • Accepted : 2017.11.04
  • Published : 2017.11.30

Abstract

Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at $4^{\circ}C$. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.

본 연구에서는 lab scale 용량으로 100 mL, 1 L 단위로 리포좀을 제조하였으며, prototype scale로서 10 L 단위로 blank 리포좀의 제조한 뒤 입자 크기 및 포집 효율을 측정하여 최적 제조 조건 선정하였다. 선정한 최적조건으로 어피 펩타이드를 리포좀으로 포집하여 그에 따른 저장 안정성을 평가하였다. 1차 균질 조건은 초고속균질기를 사용하여 3분간 각각 4,000 rpm, 8,000 rpm, 12,000 rpm으로 균질하였으며, 2차 균질 조건은 초음파균질기를 이용하여 각각 40 W, 60 W, 80 W로 3분간 균질하여 최적 균질 조건을 확립한 뒤 어피 펩타이드 리포좀을 농도에 따라 제조하여 $4^{\circ}C$에서 냉장 저장하였다. 최적 제조 조건 실험 결과를 two-way ANOVA로 분석한 결과 1, 2차 균질에서는 제조 용량이 입자크기와 제타 전위에 유의적으로 가장 큰 영향을 미쳤으며(p<0.001), pdI는 2차 균질 조건에서 제조용량을 제외하고는 어떤 요인도 유의적으로 영향을 미치지 못하였다(p>0.05). 1차 균질 실험 결과 lab scale에서 prototype scale로 제조 용량이 증가하였을 때, 유의적으로 입자크기가 증가하였으며(p<0.05), 가장 입자크기가 작고 제타전위의 절대값이 높은 4,000 rpm을 최적조건으로 선정하였다. 2차 균질 실험결과 40 W에서 제조 용량이 증가하였을 때 유의적으로 제타전위가 감소하였으며, 60 W 이상에서는 안정적인 결과가 나타났다. 리포좀의 산업적 적용을 고려할 때 공정비용 감소 측면에서 80 W보다 60 W가 적절하다고 사료된다. 선정된 리포좀 최적 조건으로 농도(3, 6, 12, 24%)별로 어피 펩타이드를 포집하였을 때, 24%에서 입자크기가 1 mm 이상으로 크게 나타났다. 이후 저장실험에서는 24%를 제외한 3가지 조건으로 진행하였다. 1달간 어피 펩타이드 리포좀을 냉장 저장한 결과를 two-way ANOVA로 분석한 결과, 펩타이드 농도에 따라 제조하였을 때는 입자크기와 제타 전위가 제조용량보다 펩타이드 농도에 더 큰 영향을 받았다. 또한 저장기간은 pdI에 유의적으로 영향을 미치는 것으로 나타났다(p<0.001). 입자크기는 제조용량과 펩타이드 농도가 증가함에 따라서 유의적으로 증가하였으며, 저장기간에 따라서 감소하였다. 제타전위는 10 L 용량에서 저장기간에 따라 증가하는 경향을 보였다. 이는 리포좀이 풀리면서 비표면적이 증가하여 제타전위가 증가한 것으로 사료된다. 또한 12%에서 3주차부터 침전물층이 형성되는 것이 관찰되어 6%가 가장 산업적용으로 적합한 농도로 사료된다.

Keywords

Acknowledgement

Grant : 저분자 펩타이드와 커큐민을 이용한 나노식품 제조기술의 산업체 상용화 연구 및 제품 개발

Supported by : 농림수산식품부

References

  1. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. 2013. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8: 102. https://doi.org/10.1186/1556-276X-8-102
  2. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. 2016. Liposome production by microfluidics: potential and limiting factors. Sci. Rep. 6: 25876. https://doi.org/10.1038/srep25876
  3. Charcosset C, Juban A, Valour JP, Urbaniak S, Fessi H. 2015. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 94: 508-515. https://doi.org/10.1016/j.cherd.2014.09.008
  4. Cho HN, Cho DW, Hurk BS, Bae HA, Kim DE, Baek HH. 2015. Characterization of off-odor compounds of collagen peptides from tilapia scale using GC-MS-olfactometry. Food Sci. Biotechnol. 24: 403-410. https://doi.org/10.1007/s10068-015-0053-8
  5. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88: 170-175.
  6. Cui M, Wu W, Hovgaard L, Lu Y, Chen D, Qi J. 2015. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int. J. Pharm. 489: 277-284. https://doi.org/10.1016/j.ijpharm.2015.05.006
  7. Jin BS, Yoo JY. 2001. A study on the characteristics and stability of liposomes. J. Life Sci. Stud. 6: 74-81.
  8. Jung YM, Bnag EJ, Kang ST. 2015. Quality characteristics of noodles added with freeze-dried fish scale collagen mixture powder. J. Korean Soc. Food Sci. Nutr. 44: 449-454. https://doi.org/10.3746/jkfn.2015.44.3.449
  9. Kang MJ. 2014. Preparation and evaluation of proliposomes by freeze-drying method. MS thesis, Seoul National Univ., Seoul, Korea.
  10. Kim DY, Lee JS. 2015. Directions for eco-friendly utilization and industrialization of fishery by-products. J. Fish. Mar. Sci. Educa. 27: 566-575.
  11. Kim KI, Lee SY, Lee JS, Lee JG, Min SG, Choi MJ. 2015. Effect of liposome-coated hemicellulase on the tenderization of burdock. Korean J. Food Sci. Technol. 47: 698-703. https://doi.org/10.9721/KJFST.2015.47.6.698
  12. Kim S, Turker MS, Chi EY, Sela S, Martin GM. 1983. Preparation of multivesicular liposomes. Biochim. Biophys. Acta. 728: 339-348. https://doi.org/10.1016/0005-2736(83)90504-7
  13. Kim YA, Han HD, Hyun JH, Sin BC. 2005. Stability of liposomal nano-powder with the addition of cryoprotectant. J. Korean Chem. Soc. 49: 189-195. https://doi.org/10.5012/jkcs.2005.49.2.189
  14. Kim YA, Han HD, Shin BC. 2004. Effects of maltose on the stability of freeze-dried liposomes. J. Korean Chem. Soc. 4: 616-622.
  15. Lee JM, Cho YJ, Park DJ, Ko SH, Lee SC. 2008. Preparation of nano-liposome by sonication and pressure. Korean J. Food Sci. Technol. 40: 115-117.
  16. Lee JS, Lee MY, Cho HY, Choi MJ. 2016. Effect of liposomecoated salt on salty taste intensity of noodle. Food Eng. Prog. 20: 98-104. https://doi.org/10.13050/foodengprog.2016.20.2.98
  17. Lee MJ, Jeong NH, Jeang BS. 2010. Preparation and properties of soybean lecithin liposome using supercritical reverse phase evaporation method. J. Korean Oil Chem. Soc. 27: 391-398.
  18. LI Y, Asadi A, Monroe MR, Douglas EP. 2009. pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Mater. Sci. Eng. C, 29: 1643-1649. https://doi.org/10.1016/j.msec.2009.01.001
  19. Lim JS, Gang HJ, Yoon SW, Kim HM, Suk JW, Kim DU, Lim JK. 2010. Preparation and its stability of a coenzyme Q10 nanoemulsion by high pressure homogenization with different valve type conditions. Korean J. Food Sci. Technol. 42: 565-570.
  20. M&C Life Science. 2015. Natural liposome comprising red Ginseng, process for the preparation there of and food, pharmaceutical or cometic composition comprising the same. Korea patent NO. 101750616
  21. Oh SR, Lee SB, Cho KM, Choi MJ, Jin BS, Han YM, Lee YM, Shim JK. 2006. Preparation and characterization of nano-sized liposome containing proteins derived from Coptidis rhizome. Appl. Chem. Eng. 17: 52-57.
  22. Park IC, Lee PJ, Yang JW, Kim JD, Choe TB. 1994. Reduction of cell membrane toxicity of amphotericin B using micelle, liposome and polyethylene glycol. Kor. J. Appl. Microbial Biotechnol. 22: 290-295.
  23. Park JB, Noh HG, Jung JH, Kim JM, Kang CY. 2012. Enhanced transdermal delivery and optimization of nano-liposome preparation using hydrophilic drug. J. Pharm. Investig. 42: 57-63. https://doi.org/10.1007/s40005-012-0009-4
  24. Park SH, Lee JK, Jeon JK, Byun HG. 2011. Characterization of a collagenase-1 inhibitory peptide purified from skate Dipturus chilensis skin. Korean J. Fish. Aquat. Sci. 44: 456-463.
  25. Sebaaly C, Greige-Gerges H, Stainmesse S, Fessi H, Charcosset C. 2016. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 15: 1-10. https://doi.org/10.1016/j.fbio.2016.04.005
  26. Sulkowski WW, Pentak D, Nowak K, Sulkowska A. 2005. The influence of temperature, cholesterol content and pH on liposome stability. J. Mol. Struct. 744: 737-747.
  27. Wagner A, Vorauer-Uhl K. 2011. Liposome technology for industrial purposes. J. Drug Deliv. 2011: 9.
  28. Wilkinson MG, Kilcawley KN. 2005. Mechanism of incorporation and release of enzymes into cheese during ripening. Int. Dairy J. 15: 817-830. https://doi.org/10.1016/j.idairyj.2004.08.021
  29. Xia S, Xu S. 2005. Ferrous sulfate liposomes: Preparation, stability and application in fluid milk. Food Res. Int. 38: 289-296. https://doi.org/10.1016/j.foodres.2004.04.010
  30. Yoo JY. 2002. A study on the preparation and characterization of liposome using PVA hydrogel. MS thesis, Dongduk Womens Univ., Seoul, Korea
  31. Zawada ZH. 2004. Vesicles with a double bilayer. Cell. Mol. Biol. Lett. 9: 589-602.