• Title/Summary/Keyword: 구조강성 저하

Search Result 181, Processing Time 0.022 seconds

A Multiple Crack Propagation Analysis considering Initial Flaw and Stress Order in Riveted Specimens (리벳 시편의 초기결함과 응력배열을 고려한 다중균열진전해석)

  • Kim, Jung-Hoon;Zi, Goang-Seup;Kim, Min-Sung;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.326-329
    • /
    • 2010
  • 항공기는 전체 수명동안 무수한 반복하중에 노출되기 때문에, 동체에 피로로 인한 다중균열이 불가피하게 발생하게 된다. 이 다중균열은 기체의 강성을 저하시킬 뿐 만 아니라, 종국적으로는 해당 기체구조의 파단을 야기할 수 있다. 초기 결함과 운용 중에 작용되는 응력 스펙트럼은 구조물의 피로수명에 영향을 끼치며 고려해야 한다. 본 논문에서는 초기결함 특성을 파악하기 위한 등가초기결함크기 분포를 산출하고 리벳 시편의 다중균열모델에 대해서 초기결함과 응력배열을 고려한 해석을 수행하였다.

  • PDF

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Soon-Kyu;Kim, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • This is a preliminary study on the development of precast beam-column joints for dry construction methodology. Precast beam column joints with thru-connectors (BCJ_TC) using high strength bars or PS strands were developed and their seismic performance including strength degradation, stiffness degradation and energy dissipation capacity was experimentally evaluated. Test results showed that compressive failures at the end blocks of PC beam members occurred dominantly while PC columns including panel zones were free from any damage. However, the connections confined with CFRP at the end block showed much improved seismic performance than that of the unconfined connections. Connections with neoprene pad fillers between beam and column interfaces were better than the other connections in all the seismic performances except initial stiffness. To improve the seismic performances of BCJ_TC, compressive strength of the concrete at the end block need to be increased to compensate for the additional compressive stresses due to unbonded connectors and deformation of connectors should be controlled respectively.

Inelastic Behavior of Reinforced Concrete Frame Structure with Shear Strength of Masonry Wall (조적벽의 전단강도를 고려한 철근콘크리트골조의 비탄성 거동)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4216-4222
    • /
    • 2011
  • In this study the inelastic behavior of the existing school buildings with infilled masonry walls is analysed by pushover method. The shear stiffness and strength of masonry wall is calculated from the prior experimets and verified by inelastic analysis. The height of infilled masonry wall affects the structural behavior. The higher the masonry wall height, the higher the initial shear stiffness and strength of masonry wall. As the cracks are developed, the strength of masonry wall is much decreased. The proposed inelastic analysis method shows similar results with the experiments and can be used as inelastic analysis model of reinforced concrete buildings with infilled masonry walls.

Engineering Properties of Semi-rigid Pavement Material Produced with Sulfur Polymer Emulsion and Reinforcing Fibers (Sulfur Polymer Emulsion 및 보강용 섬유를 활용한 반강성 포장재의 공학적 특성)

  • Lee, Byung-Jae;Seo, Ji-Seok;Noh, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • The application of sulfur polymer emulsion (SPE) as an acrylate substitute for semi-rigid pavement grout was evaluated, and the performance improvement by employing PVA fibers were also evaluated. The result indicated that the filling ratio of semi-rigid pavement material decreased as the fiber content increased, but it was measured to be 92~94% in every mixing condition, which satisfies the target performance, 90%. The maximum Marshall stability value of semi-rigid pavement material was measured to be 25.4 kN, which is about 4.7 times higher than the Korean Standard required for semi-rigid pavement material, 5.0 kN. The dynamic stability evaluation of semi-rigid pavement material indicated that the resistance to deformation from the wheel tracking test was improved by an SPE substitution, and in every mixing condition, the deformation converged to a constant value after 45 minutes with the same dynamic stability of 31,500 times/mm. The strain at the flexural failure was about 0.53%, which shows superior rigidity to asphalt pavements. The examination of abrasion resistance and impact resistance showed that the loss ratio was 9.8~6.0% in every mixing condition, which indicates a good abrasion resistance. Also, when fiber content ratio was 0.3%, the impact resistance was 2.82 times higher compared to plain (i.e., when fibers were not added). In the limited range of this study, an SPE substitution ratio of 30% was found to be an optimal level considering the mechanical and durability performance. In addition, it is thought that semi-rigid pavement material with superior performance could be manufactured if fiber content ratio up to 0.3% is applied depending on the purpose of use.

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

Numerical Homogenization in Concrete Materials Using Multi-Resolution Analysis (다중해상도해석을 이용한 콘크리트 재료의 수치적 동질화)

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.939-946
    • /
    • 2005
  • The stiffness properties of heterogeneous concrete materials and their degradation were investigated at different-levels of observations with aids of the opportunities and limitations of multi-resolution wavelet analysis. The successive Haw transformations lead to a recursive separation of the stiffness properties and the response into coarse-and fine-scale features. In the limit, this recursive process results in a homogenization parameter which is an average measure of stiffness and strain energy capacity at the coarse scale. The basic concept of multi-resolution analysis is illustrated with one and two-dimensional model problems of a two-phase particulate composite representative of the morphology of concrete materials. The computational studies include the meso-structural features of concrete in the form of a hi-material system of aggregate particles which are immersed in a hardened cement paste taking due to account of the mismatch of the two elastic constituents.

An Experimental Analysis of the Structure-Borne Noise Reduction on Electrical Equipment (전자장비 구조기인소음 저감방안의 실험적 검토)

  • Lee, Seong-Hyun;Seo, Yun-Ho;Kim, Won-Hyoung;Choi, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2014
  • In this paper, the structure-borne noise reduction on electrical equipment is discussed by the experimental analysis. The water cooling system in electrical equipment is the only noise source, so the mock-up was made to measure noise characteristics. Effects of power supply, stiffness, isolation of noise source and natural frequency determined by resilient mounts are investigated using the mock-up. The console prototype was made referring to noise reduction technique by the mock-up. The structure-borne noise level of a console prototype was measured and some experiments to reduce the noise was undertaken. The $1^{st}$ and $4^{th}$ harmonics of operating frequency of cooling fans causes highest structure-borne noise levels. The control of operating speeds of several DC cooling fan groups was tried. Also types and installation layouts of resilient mounts were investigated. To reduce structure-borne noise, followings can be applied: increase of stiffness, isolation of source, decrease of natural frequency of mount, combination of operating speed of fans, selection of mounts, and so on.

Method of assessment for allowable size of weld defects (熔接缺陷의 許容限界 評價方法)

  • 강성원
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.10-17
    • /
    • 1991
  • 용접구조물에서 용접이음부가 차지하는 비율은 매우 작은 경우가 많지만 용접이음부에는 각종 초기결함(이들 결함으로부터 진전하는 피로 균열, 환경에 의한 균열등을 포함) 및 용접 초기의 부정형을 비롯해서 형상적 불연속 등에서 유기되는 국부적인 응력, 변형률의 집중, 잔류응력, 구속응력, 용접금속이 갖는 숙명적인 야금적 특성의 불균일, bond부 및 HAZ부에서의 용접열 싸이클에 의한 재질의 국부적 강도저하등 용접부의 강도를 저하시키는 인자들이 복합되기 쉽고, 용접구조물 전체의 내파괴 건전성평가에서 용접부가 파괴 강도는 매우 중요하다. 용접구조물의 설계, 시공의 목적은 소요성능의 확보에 있고 구조물이 사용중에 성능손실이나 불안정 파괴가 발생하지 않도록 하는 것이 주요요건이 될 것이다. 현재의 제강기술수준에서 볼 때 모재의 강 도보다 오히려 용접부의 강도 특히 피로강도 및 파괴 인성을 적절하고 합리적으로 평가하는 것이 매우 중요하다고 해도 과언이 아닐 것이다. 용접부의 강도를 평가하는데 있어서 용접부에 발 생하는 용접결함에 대한 평가는 매우 중요하며 이들 결함에 대한 허용결함한계를 평가하여 보수 여부 및 용접구조물의 신뢰성을 평가 할 필요가 있다.

  • PDF

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.