DOI QR코드

DOI QR Code

부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study

  • 최만권 (농촌진흥청 국립원예특작과학원 시설원예연구소) ;
  • 류희룡 (농촌진흥청 국립원예특작과학원 시설원예연구소) ;
  • 조명환 (농촌진흥청 국립원예특작과학원 시설원예연구소) ;
  • 유인호 (농촌진흥청 국립원예특작과학원 시설원예연구소)
  • Choi, Man-kwon (Protected Horticulture Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ryu, Hee-ryong (Protected Horticulture Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Myeong-whan (Protected Horticulture Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yu, In-ho (Protected Horticulture Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2017.09.21
  • 심사 : 2017.10.21
  • 발행 : 2017.10.31

초록

본 연구에서는 실대형 실험과 구조해석을 통하여 현장에서 사용되는 기둥-서까래-도리, 기둥-도리-방풍벽 접합부를 적용한 강관 골조 플라스틱 연동온실의 정적 구조성능을 분석하였다. 실대형 재하실험 결과는 접합부를 강접합으로 가정한 구조해석 결과와 비교하여 구조물의 횡방향 강성과 각 부재의 하중분담률에서 많은 차이를 보였다. 동고 높이에서 측정한 수평변위는 실험과 구조해석의 차이가 40%이었고 수직변위는 89%의 차이를 보였다. S3 부재의 발생응력을 기준으로 한 각 부재별 하중분담률을 비교한 결과 실험과 구조해석에서 두 배 이상의 차이를 보이는 부재가 있었으며, 하부측벽이음(S2), 기둥 상부(S7) 등 주요 부재의 실험결과가 구조해석의 하중분담률을 재현하지 않았다. 현장에서 사용하는 접합부가 충분한 강성을 확보하지 않음으로써 구조물에 작용하는 외력을 각 부재에 적절하게 전달하지 못했으며 이로 인해 구조물의 강성이 저하되는 현상이 나타났다. 설계 단계에서 일반적으로 구조해석에 의해 결정되는 구조성능의 신뢰도는 접합부의 특성을 보다 면밀하게 고려했는지 여부에 따라 좌우 될 수 있다. 따라서 온실 구조 성능에 대한 신뢰성을 높이기 위해서는 온실에 사용되는 다양한 접합부를 고려할 수 있는 구조해석 기술의 개발이 필요하며 설계 기준에서 상세 설계 방법을 보다 명확히 규정해야 할 것으로 판단된다.

The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

키워드

참고문헌

  1. Castellano, S., A. Candura and G. Scarascia-Mugnozza. 2005. Greenhouse structures sls analysis: Experimental results and normative aspects. ISHS Acta Hort. 691:701-708.
  2. Choi, M.K., S.K. Chang, M.W. Cho, I.H. Yu, Y.A. Shin and H.R. Ryu. 2016. Dynamic analysis for full-scale single-span plastic greenhouse with joint in rafter. Proceedings of the Korean Society for Agricultural Machinery Conference. The Korean Society of the Agricultureal Machinery (KSAM).p. 255-256.
  3. European Standard [EN]. Nen-en 13031-1 greenhouse: Design and construction - part 1 : Commercial production greenhouse. European Committee for Standardization CEN. Brussels, Belgium. 2001.
  4. Ha, T.H., J.W. Kim, B.H. Cho, D.J. Kim, J.E. Jung, S.H. Shin and H.J. Kim. 2017. Finite element model updating of multi-span greenhouses based on ambient vibration measurements. Biosyst Eng. 161:145-156. https://doi.org/10.1016/j.biosystemseng.2017.06.019
  5. Japan Greenhouse Horticulture Association. Standard for structures of greenhouse. Greenhouse Horticulture Association. Japan 1999.
  6. Lee, J.Y. 2001. Visualfea user's manual. Intuition Software, Jeonbuk, Korea.
  7. Ministry of Agriculture Food and Rural Affairs (MAFRA) and Rural Development Administration (RDA). 2014. Design and construction code on horticultural and herbal facilities for disaster resistance. MAFRA & RAD, Gwacheon and Jeonju, Korea.
  8. Ryu, H.R., M.K. Choi, M.W. Cho, I.H. Yu and Y.A. Shin. 2017. Dynamic analysis of single-span film plastic greenhouse with joint in rafter. International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant Factory (Greensys 2017). International Society for Horticultural Science (ISHS).
  9. Ryu, H.R., E.H. Lee, M.W. Cho and I.H. Yu. 2012. Vibration characteristics change of steel-pipe greenhouse with different damage levels. Joint Conference on Environmental Engineering on Agriculture 2012. SASJ.p. 62.
  10. Ryu, H.R., E.H. Lee, M.W. Cho, I.H. Yu and Y.C. Kim. 2012. Evaluation on the behavioral characteristics of plastic greenhouse by full-scale testing and finite element analysis. Journal of Bio-Environment Control. 21(4):459-465. https://doi.org/10.12791/KSBEC.2012.21.4.459
  11. You, H.Y., Y. Paek, H.J. Kim, H. Chun and I.H. Yu. 2007. A study on structural behaviour characteristics of high-rise improved 1-2w vinyl-house for paprika cultivation. Proceedings of the Korean Society for Bio-Environment Control Conference. Journal of Bio-Environment Control.p. 42.
  12. Yum, S.H., Y. N.G, H.S. Lee, G.W. Kim, Y.H. Cho, S.J. Park and M.K. Park. 2007. The optimum specification of pipes in rain-sheltering greenhouse with roof vents for large-grain grapevine cultivation. Journal of Bio-Environment Control 16(4):275-283.