Browse > Article
http://dx.doi.org/10.3795/KSME-A.2011.35.7.821

Lightweight Crane Design by Using Topology and Shape Optimization  

Kim, Young-Chul (School of Mechanical and Automotive Engineering, Kunsan Nat'l Univ.)
Hong, Jung-Kie (School of Mechanical and Automotive Engineering, Kunsan Nat'l Univ.)
Jang, Gang-Won (Faculty of Mechanical and Aerospace Engineering, Sejong Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.35, no.7, 2011 , pp. 821-826 More about this Journal
Abstract
CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.
Keywords
Topology Optimization; Shape Optimization; Crane; Morphing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Chiandussi, G., Gaviglio, I. and Ibba, A., 2004, "Topology Optimisation of an Automotive Component Without Final Volume Constraint Specification," Advances in Engineering Software, Vol. 35, pp. 609-617.   DOI   ScienceOn
2 Fredricson, H., 2005, "Topology Optimization of Frame Structures - Joint Penalty and Material Selection," Structural and Multidisciplinary Optimization, Vol. 30, No. 3, pp. 193-200.   DOI
3 Jang, G. W., Yoon, M. S. and Park, J. H., "Lightweight Flatbed Trailer Design by Using Topology and Thickness Optimization," Structural and Multidisciplinary Optimization, Vol. 41, No. 2, pp. 295-307.
4 Shimoda, M. and Tsuji, J., 2007, "Shape Optimization for Weight Reduction of Automotive Shell Structures Subject to a Strength Constraint," SAE Paper, No. 2007-01-3720.
5 Kim, M. S., Lee, C. W., Son, S., Yim, H. J. and Heo, S. J., 2003, "Shape Optimization for Improving Fatigue Life of a Lower Control Arm," Trans. of the KSAE, Vol. 11, No. 3, pp. 161-166.   과학기술학회마을
6 Jang, G. W., Choi Y. M. and Choi, G. J., 2008, "Discrete Thickness Optimization of an Automobile Body by Using the Continuous-Variable-Based Method," Journal of Mechanical Science and Technology, Vol. 22, No. 1, pp. 41-49.   DOI   ScienceOn
7 Choi, K. K. and Chang, K. H., 1994, "A Study of Design Velocity Field Computation for Shape Optimal Design," Finite Elements in Analysis and Design, Vol. 15, pp. 317-341.   DOI   ScienceOn
8 Altair Engineering, 2010, HyperMesh Basic Training Manual.
9 Altair Engineering, 2010, HyperMorph Basic Training Manual.
10 Altair Engineering. 2010, Optistruct Training Manual.
11 Yang, R. J. and Chahande, A. I., 1995, "Automotive Applications of Topology Optimization," Structural Optimization, Vol. 9, pp. 245-249.   DOI   ScienceOn
12 Fukushima, J., Suzuki K. and Kikuchi, N., 1992, "Shape and Topology Optimization of a Car Body with Multiple Loading Conditions," SAE Paper, No. 920777.