• Title/Summary/Keyword: 광섬유 센서 배열

Search Result 27, Processing Time 0.025 seconds

Effects of Gamma Irradiation on Array Type Fiber Bragg Grating Sensors (배열형 FBG 센서의 감마선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.937-939
    • /
    • 2016
  • In this study, we studied the gamma-radiation effect of fiber Bragg gratings (FBGs) manufactured by array sensors. The array FBGs were fabricated in a different Bragg wavelength using the same commercial Ge-doped fiber and exposed to gamma-radiation up to a dose of about 100 kGy at the dose rate of 113 Gy/min. It was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift after irradiation.

  • PDF

Characteristics of 2-Channel TDM fiber-optic sensor array (TDM 방식의 2채널 광섬유 센서 배열 특성 연구)

  • Lee, Jong-Kil
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.306-312
    • /
    • 1998
  • To develop the multi-channel fiber-optic sensor array system, two-channel TDM(Time Division Multiplexing) fiber-optic sensor array was constructed and characterized. The sensor array topology was Mach-Zehender ladder type and PMDI(Phase-Matched Differential Interferometer) technique was used to exploit the efficiency of the array signal processing. By using a synthetic heterodyne demodulation technique, outputs of the two channels were monitored simultaneously. The sensitivities of channel #1 and #2 were measured ${\sim}60{\mu}rad/\sqrt{Hz}$ and ${\sim}80{\mu}rad/\sqrt{Hz}$, respectively. Crosstalk of sensors in the array was found to be approximately -36dB. Based on the results, we could conclude that TDM Mach-Zehnder ladder type sensor array can be used to detect the acoustic signal with stability and efficiency of the sensor array.

  • PDF

Investigation of the Lateral Acoustic Signal Detection Using by Two Fabry-Perot Fiber Optic Sensor Array (두 개의 Fabry-Perot 광섬유 센서 배열을 이용한 횡방향 음압 감지 특성 연구)

  • Lee, Jong kil
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.185-199
    • /
    • 2006
  • In this paper, to detect lateral direction sound pressure fiber optic sensor using Fabry-Perot interferometeric sensor array was fabricated and experimented. This parallel sensor array composed of one light source and the light split into each sensor using directional coupler and to see the output signal the array system do not need any digital signal processor. As a lateral direction sound source arbitrary sound frequency of 100Hz, 200Hz, and 655Hz using by nondirectional speaker were applied to the array sensor which installed on $60cm{\times}60cm{\times}60cm$ latticed structure. The detected signals from the two sensors were analyzed in the time and frequency domains. It was confirmed that the suggested sensor array detected applied sound source well but there were a little amplitude differences in between the sensors. Because the sensor supported simply at both ends theoretical analysis was performed and its solution was suggested. To compare the theoretical and experimental results arbitrary sound frequency of 2kHz was applied to the sensor array. It shows that experimental results was good agreement with theoretical results.

Mechanically Induced Long Period Fiber Grating Array Device and Sensor Application (기계적으로 유도되는 장주기 광섬유 격자 배열 소자 및 센서 응용)

  • Lee, Nam-Kwon;Song, Jae-Won;Park, Jea-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.142-148
    • /
    • 2007
  • A mechanically induced long-period fiber grating array was fabricated and its transmission characteristics were measured. The grating away consisted of a rubber cover and a 45 cm metal bar with 10 grating groups. Each grating group was composed of 60 gratings. The period of the grating of the grating groups was increased by $10{\mu}m$ increments from $690{\mu}m$ to $780{\mu}m$. The long period fiber grating was induced when the pressure was applied on the long period grating array and the resonant wavelength depended on the position of applied pressure. The experimental results shows that this long period fiber grating away can be used as a various band rejection filter or a fiber optic sensor.

Investigation of the Acoustic Detection in Transformer Oil Using Sagnac Fiber Optic Sensor Array (Sagnac형 광섬유 배열센서를 이용한 유증 음답 탐지 연구)

  • Lee, Jog-Kil;Lee, Seung-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.533-534
    • /
    • 2010
  • Fiber optic sensor has bee widely used in the industrial applications. For the application of acoustic detection of the high voltage electric transformer Sagnac interferometer can be used. In this paper several different materials of mandrel were used in the fiber sensor array. Based on the transformer oil fiber optic sensor is more sensitive than in the air.

  • PDF

The Performance Analysis of Optical CDMA based Acoustic Sensor System using Optical Fiber Sensors (광 CDMA 기반광섬유 센서를 이용한 음파탐지 시스템의 특성 분석)

  • Park, Sang-Jo;Kim, Bong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.956-962
    • /
    • 2008
  • We propose the optical CDMA based audio acoustic sensor using optical fiber sensors which can be used in the bottom of the sea. In the proposed network, we analyzed the performance of noise power. Numerical simulations confirm that the performance can be improved by increasing the measuring time of optical sensors compared with using conventional WDMA method.

A Study on a Multi-channel Fiber Optic Hydrophone System (다채널 광섬유 하이드로폰 배열 시스템에 관한 연구)

  • 김정석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.89-93
    • /
    • 2001
  • In recent years Fiber optic hydrophone systems have been the focus of much attention in the sonar world. For sonar arrays, a fiber optic approach offers the major benefit of passive multiplexing of large numbers of hydrophones without underwater electronics. This paper describes recent development work covering array construction, opto-electronics development, hydrohpone design and sea trials. And the development of an interferometric mult-channel fiber optic hydrophone system which uses time division multiplexing capable of driving in excess of 32 channel is described. For this, a 12 channel time division multiplexing array has been constructed, and the performance of this system is demonstrated by sea trial.

  • PDF

Characteristics of Underwater Sound Detection of the Fiber Optic Hydrophone Array (광섬유 하이드로폰 배열의 수중음향 감지특성 연구)

  • Lee, Jong-Kil
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.102-107
    • /
    • 1999
  • In this paper, to develop the fiber optic hydrophone for the use of low frequency applications, two channels TDM(Time Division Multiplexing) fiber-optic hydrophone array was fabricated and their acoustic charateristics were investigated in the acoustic water tank. A fiber length of the order of 150m is wounded at the hollow cylinder type aluminum mandrel and the fundamental natural frequency of the mandrel maintained above 10kHz. An unbalanced interferometer (discrete Mach-Zehnder type) was used. Sound detection performance is tested in the underwater tank with 3kHz continuous sound source. Finally, it is shown that two channels TDM fiber-optic hydrophone array can detect 3kHz sound stably. This results can also applicable for the development of multi-channel fiber optic hydrophone array.

  • PDF

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer (사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링)

  • Lee, Jongkil;Lee, Seunghong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2015
  • The fiber optic Sagnac interferometer is well established as a sensor for detection of physical perturbations such as acoustic and vibration. In this paper acoustic signals generated in the cylindrical cavity submerged in transformer oil were measured by the fiber optic sensor array in one Sagnac loop. Two different external sound frequencies, $f_1$ and $f_2$, were applied to the sensor array simultaneously by using piezoelectric with frequency range from 5 kHz to 90 kHz. Based on the experimental results, fiber optic sensor detected harmonic series of applied sound frequency such as $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$. Suggested fiber optic sensor array can be applied to monitor physical quantities such as internal sound pressure and vibration due to partial discharge in the real electric transformer system.