• Title/Summary/Keyword: 관측기설계

Search Result 376, Processing Time 0.032 seconds

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

Robust Vehicle Lateral Stability Controller Against Road Bank Angles (도로 횡경사 변화에 견실한 차량 횡안정성 제어기 설계)

  • Na, Ho Yong;Cho, KunHee;You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.967-974
    • /
    • 2017
  • In this paper, a differential-braking-based yaw moment control system was developed to guarantee robust performance against road bank angle. A new target yaw rate model was established by combining the signal from a lateral acceleration sensor and 2-DOF single track model. In addition, a disturbance observer was utilized to take into account parameter uncertainties in yaw dynamics and to improve robust performance of the controller. CARSIM, which is a multi-DOF vehicle dynamic simulation tool, was used to verify the performance of the proposed controller in various driving scenarios. The simulation results indicate that the stability of the vehicle was robustly maintained by the controller, which is characterized by the reflection of the signal of a lateral acceleration sensor signal and by the compensation of the errors in the model parameters via the disturbance observer.

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.

A Method on Design of Robust Control System (견실 제어계의 설계법에 관한 연구)

  • 이상욱;홍순일;손의식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.125-128
    • /
    • 2000
  • 가상적인 검출잡음을 가정하고 칼만 필타(Kalman Filter)를 고려하여 근사적 최적 레귤레이터의 특성에 가깝게 함으로써 견실 안정성을 회복할 수 있는 제어 시스템의 설계에 관하여 검토한다. 본 연구에서는 관측기를 이용한 최적 레귤레이터 계에 적분기를 결합한 견실제어계의 설계법을 나타내고 견실성을 회복할 수 있는 제어기의 파라미터 설정법을 나타낸다. 제어대상의 파라미터 변동에 의해서 생기는 등가인 외란을 억제하고 과도특성이 변하지 않는 제어 시스템을 모델 매칭의 원리에 기초하여 설계한다.

  • PDF

Model Matching for Input/Output Asynchronous Machines Using Output Equivalent Machines (출력 등가 머신을 이용한 비동기 순차 머신의 모델 정합)

  • Park, Yong Kuk;Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.173-181
    • /
    • 2014
  • This paper addresses the problem of model matching control for a class of systems modeled as input/output asynchronous sequential machines. Based on the feedback control scheme, we design a corrective controller that compensates the behavior of the closed-loop system so as to match a reference model. Whereas the former studies use state observers and the output burst for designing a controller, the present research needs neither the observer nor the output burst in controller design. We define the 'output equivalent machine' of the considered machine to describe the existence condition and the construction algorithm for the proposed controller. A case study is provided to show the operation of the proposed corrective controller.

The Haar Function Approach for the Unknown Input Observer Design (미지입력 관측기 설계를 위한 하알함수 접근법)

  • 김진태;이한석;임윤식;김종부;이명규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.117-126
    • /
    • 2003
  • This paper proposes a real-time application of Walsh functions which is based on the on-line Walsh transformation and on-line Walsh function's differential operation. In the existing method of orthogonal functions, a major disadvantage is that process signals need to be recorded prior to obtaining their expansions. This paper proposes a novel method of Walsh transformation to overcome this shortcoming. And the proposed method apply to the unknown inputs observer(UIO) design for linear time-invariant dynamical systems

The Improvement of low speed driving characteristics of induction motor by inertia moment identification. (관성 모멘트 동정에 의한 유도전동기의 저속운전 특성개선)

  • 이성근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.627-634
    • /
    • 1998
  • This paper proposes an algorithm which improves capacity of a state observer and low speed driving characteristics of a induction motor by inertia moment identification. In induction motet driving systems, it is difficult to obtain the accurate speed information by a low resolution encoder because the encoder pulses are very few in a low speed range. To improve this problem, state observer based on the Gopinath' theory which estimates speed and disturbance was designed, and disturbance rejection control was realized by application of the observer. Also, inertia moment of the motor was estimated and the nominal inertia of the observer was identified to minimize the error of estimated speed and disturbance. From the simulation and experimental results, it is showed that the proposed observer improved the transient response characteristics in low speed region below 6[rpm].

  • PDF

Performance Improvement of Single-phase PLL Control using State Observer (상태관측기를 이용한 단상 PLL제어의 성능 개선)

  • Hwang, Hee-Hun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • This paper proposes a single-phase Phase-locked loop (PLL) of the virtual two phase generator using full-order state observer, which is essential to find phase and frequency of the single-phase source. The conventional methods cannot remove the low-order harmonics included in source voltage, which influencesto whole PLL control system. The proposed algorithm separates fundamental wave from harmonics, and removes harmonics effectively. Therefore it generates only the fundamental wave. As it controls virtual voltage and input voltage together, it decreases steady-state error. From simulation and experimental results, the generated frequency by the proposed PLL which it plans, converges to the actual value, and the steady-state error is much reduced under given harmonic voltages. It is also confirmed that the proposed algorithm removed harmonics effectively and it generates only the fundamental wave.

Development of Vehicle Integrated Dynamics Control System with Brake System Control (제동 장치를 이용한 차량통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.591-597
    • /
    • 2017
  • This study is to develop a vehicle Integrated Dynamics Control System(IDCB) that can stabilize the lateral dynamics and maintain steerability. To accomplish this task, an eight degree of freedom vehicle model and a nonlinear observer are designed. The IDCB independently controls the brake systems of four wheels with a fuzzy logic control and a sliding model control. The result shows that the nonlinear observer produced satisfactory results. IDCB tracked the reference yaw rate and reduced the body slip angle under all tested conditions. It indicates that the IDCB enhanced lateral stability and preserved steerability.