DOI QR코드

DOI QR Code

제동 장치를 이용한 차량통합운동제어시스템 개발

Development of Vehicle Integrated Dynamics Control System with Brake System Control

  • 송정훈 (동명대학교 메카트로닉스공학과)
  • 투고 : 2016.09.20
  • 심사 : 2017.03.31
  • 발행 : 2017.07.01

초록

이 논문은 횡방향 안정성 및 조향성능 개선을 위한 차량 통합운동제어시스템(IDCB)의 개발에 관한 것이다. IDCB의 개발을 위하여 8자유도의 차량 모델 및 비선형 관측기를 설계하였다. 퍼지 로직 제어 방법 및 슬라이딩 모드 제어 방법을 이용하여 전륜 및 후륜의 제동압력을 독립적으로 제어하여 차량의 요 속도 및 횡방향 미끄러짐 각이 목표값을 추종하도록 하였다. 결과를 살펴보면 비선형 관측기는 만족할 만한 수준의 관측 결과를 보여주었다. 개발된 IDBC는 다양한 노면 조건 및 운전 조건에서 요속도 및 횡방향 미끄러짐 각이 목표값을 잘 추종하도록 하여 차량의 횡방향 안정성 및 조향성을 개선시키는 것을 확인할 수 있다.

This study is to develop a vehicle Integrated Dynamics Control System(IDCB) that can stabilize the lateral dynamics and maintain steerability. To accomplish this task, an eight degree of freedom vehicle model and a nonlinear observer are designed. The IDCB independently controls the brake systems of four wheels with a fuzzy logic control and a sliding model control. The result shows that the nonlinear observer produced satisfactory results. IDCB tracked the reference yaw rate and reduced the body slip angle under all tested conditions. It indicates that the IDCB enhanced lateral stability and preserved steerability.

키워드

참고문헌

  1. Annamalai, R., Marathe, M., Karle, U. S., Venkatesan, K. P., McCoy, C. and Toth-Antal, B., 2013, "Development of Vehicle Yaw Stability Controller," SAE Transactions, SAE 2013-26-0086.
  2. Song, J., 2013, "Design and Comparison of AFS Controllers with PID, Fuzzy-Logic, and Sliding-Mode Controllers," Advances in Mechanical Engineering," http://ade.sagepub.com/content/5/401548.
  3. Song, J., 2013, "Development and Comparison of Integrated Dynamics Control Systems with Fuzzy Logic Control and Sliding Mode Control," J. Mechanical Science and Technology, Vol. 27, No. 6, pp. 1853-1861. https://doi.org/10.1007/s12206-013-0436-9
  4. Boada, M. J. L., Boada, B. L., Munoz, A. and Diaz, V., 2006, "Integrated Control of Front-wheel Steering and Front Braking Forces on the Basis of Fuzzy Logic," Proc. IMechE, Part D: J. Automobile Eng., Vol. 220, No. 3, pp. 253-267.
  5. He, J., Crolla, D. A., Levesley, M. C. and Manning, W. J., 2006, "Coordination of Active Steering, Driveline, and Braking for Integrated Vehicle Dynamics Control," Proc. IMechE, Part D: J. Automobile Engineering, Vol. 220, No. 10, pp. 1401-1421. https://doi.org/10.1243/09544070JAUTO265
  6. Her, H., Suh, J. and Yi, K., 2014, "Integrated Control of the Differential Braking, the Suspension Damping Force and the Active Roll Moment for Improvement in the Agility and the Stability," Proc. IMechE, Part D: J. Automobile Eng., Vol. 229, No. 9, pp. 1145-1157.
  7. Kiencke, U. and Nielsen, L., 2000, Automotive Control Systems, Society of Automotive Engineers, New York.
  8. Song, J., Boo, K. and Lee, D. H., 2007, " Nonlinear Observer and Robust Controller Design for Enhancement of Vehicle Lateral Stability," J. Mechanical Science and Technology, Vol. 21, No. 5, pp. 79-86.
  9. Song, J., 2008, "Enhanced Braking Steering Yaw Motion Controllers with a Non-linear Observer for Improved Vehicle Stability," Proc. IMechE, Part D: J. Automobile Eng., Vol. 2229, No. 3, pp. 293-304.