• Title/Summary/Keyword: 과학/수학 영재

Search Result 192, Processing Time 0.026 seconds

Mathematically Gifted 6th Grade Students' Proof Ability for a Geometric Problem (초등학교 6학년 수학영재들의 기하 과제 증명 능력에 관한 사례 분석)

  • Song, Sang-Hun;Chang, Hye-Won;Chong, Yeong-Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.327-344
    • /
    • 2006
  • This study examined the proof levels and understanding of constituents of proving by three mathematically gifted 6th grade korean students, who belonged to the highest 1% in elementary school, through observation and interviews on the problem-solving process in relation to constructing a rectangle of which area equals the sum of two other rectangles. We assigned the students with Clairaut's geometric problems and analyzed their proof levels and their difficulties in thinking related to the understanding of constituents of proving. Analysis of data was made based on the proof level suggested by Waring (2000) and the constituents of proving presented by Galbraith(1981), Dreyfus & Hadas(1987), Seo(1999). As a result, we found out that the students recognized the meaning and necessity of proof, and they peformed some geometric proofs if only they had teacher's proper intervention.

  • PDF

The Effects of Characteristics of Information Gifted Students on the Selection of Science Gifted Students (정보영재의 특성이 영재학생 선발에 미치는 영향 분석)

  • Kim, Kapsu;Min, Meekyung
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.3
    • /
    • pp.367-374
    • /
    • 2018
  • In order to cultivate the human resources needed in the 4th industrial revolution era, it is necessary to select the gifted students and educate them systematically. Although excellent gifted students are important in a specific field, more convergent talents in the fields of mathematics, science, and information are required. The purpose of this study is to investigate how evaluation factors reflecting the characteristics of information gifted students affect the selection of science gifted students of a university gifted education center. In the characteristics of information gifted students, the cognitive factors such as Rule creation ability, Reasoning ability, Efficiency ability, Generalization ability, Structuring ability and Abstraction ability were highly correlated in selecting the science gifted students. Correlations in the applicants group of students for science gifted education center are higher than those in the first passers group and higher than those in the final successful candidates group. This means that the factors that shows the characteristics of the information gifted have a great influence on the selection of the science gifted.

The Program Development with Curve of Constant Width for the Math-Gifted in Elementary school (정폭도형을 활용한 초등수학영재 프로그램 개발 및 적용 결과 분석 연구)

  • Baek, Kyung Hwa;Cho, Youngmi
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.201-217
    • /
    • 2013
  • This study intends to develop and apply elementary mathematics program for gifted students based on a 'constant width shape' in order to keep pace with the STEAM education which is becoming the main issue and therefore, it set up research subject as follows; To introduce constant width shapes through 'a circle' which is a constant width shape under present education process and based on this, to search a theory about constant width shapes and reuleaux triangles. To arrange an elementary mathematics program for gifted students according to the part 3 enrichment study model of Renzulli. To revise supplement the program on the basis of field application result twice and then to materialize the program. It is expected that the developed program and study data will suggest mathematical ideas and direction of materials development in education sites of elementary mathematics program for gifted students.

  • PDF

Development of Convergence Education Program for Elementary School Gifted Education Based on Mathematics and Science (초등학교 영재교육을 위한 수학·과학 중심의 융합교육 프로그램 개발)

  • Ryu, Sung-Rim;Lee, Jong-Hak;Yoon, Ma-Byong;Kim, Hak-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.217-228
    • /
    • 2018
  • The purpose of this study is to develop STEAM program for gifted education by combining educational contents of humanities, arts, engineering, technology, and design into various subjects, focusing on mathematics-science curriculum of elementary school. The achievement standards and curriculum contents of elementary mathematics-science curriculum were analyzed while considering 2015 revised national curriculum. And then, a 16 class-hour convergence education program consisting of 3-hour block time was developed by applying the STEAM model with 4 steps. The validity of the program developed through this process was verified, and four educational experts evaluate whether the program can be applied to the elementary school. Based on the evaluation results, the convergence education program was finalized. As a result of implementing the gifted education program for mathematics-science, students achieved the objectives and values of convergence education such as creative design, self-directed participation, cooperative learning, and interest in class activities (game, making). If this convergence education program is applied to regular class, creative experiential class, or class for gifted children, students can promote their scientific creativity, artistic sensitivity, design sence, and so on.

A study on the improvement of ability of a creative solving mathematical problem (수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로-)

  • 박형빈;서경식
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • In this paper, we study the methods of improving an ability of a creative solving mathematical problem belonging to an educational system which every province office of education has adopted for the mathematically talented students. Especially, we give an attention on a preferential reaction in teaching styles according to student's LQ., the relationship between student's LQ. and an ability of creative solving mathematical problems, and seeking for an appropriative teaching methods of the improvement ability of a creative solving problem. As results, we have the followings; 1. The group having excellent students who have a higher intelligential ability prefers inquiry learning which is composed of several sub-groups to a teacher-centered instruction. 2. The correlation coefficient between student's LQ. and an ability creative solving of mathematical is not high. 3. Although the contents and the model of thematic inquiry learning don't have a great influence on the divergent thinking (ex. fluency, flexibility, originality), they affect greatly the convergent thinking - a creative mathematical - problem solving ability. Accordingly, our results show that we should use a variety of mathematical teaching materials apart from our regular textbooks used in schools to improve a creative mathematical problem solving ability in the process of thematic inquiry learning. Also we can see that an inquiry learning which stimulates student's participation and discussion can be a desirable model in the thematic mathematical classroom activities.

  • PDF

The Comparison of Perceptions of Science-related Career Between General and Science Gifted Middle School Students using Semantic Network Analysis (과학영재 중학생들과 일반 중학생들의 과학과 관련된 직업에 대한 인식 비교: 언어 네트워크 분석법 중심으로)

  • Shin, Sein;Lee, Jun-Ki;Ha, Minsu;Lee, Tae-Kyong;Jung, Young-Hee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.5
    • /
    • pp.673-696
    • /
    • 2015
  • Students' perception of science-related career strongly influences the formation of career motivation in science. Especially, the high level of science gifted students' positive perceptions plays an important role in allowing them to continue to study science. This study compared perceptions of science-related career between general and gifted middle school students using semantic network analysis. To ensure this end, we first structuralize semantic networks of science-related careers that students perceived. Then, we identified the characters of networks that two different student groups showed based on the structure matrix indices of semantic network analysis. The findings illustrated that the number of science-related careers shown in science gifted students' answer is more than in general students' answer. In addition, the science gifted students perceived more diverse science-related careers than general students. Second, scientific career such as natural scientists and professors were shown in the core of science gifted students' perception network whereas non-research oriented careers such as science teachers and doctors were shown in the core of general students' perception network. In this study, we identified the science gifted students' perceptions of science-related career was significantly different from the general students'. The findings of current study can be used for the science teachers to advise science gifted students on science-related careers.

Characteristics of Algebraic Thinking and its Errors by Mathematically Gifted Students (수학영재의 대수적 사고의 특징과 오류 유형)

  • Kim, Kyung Eun;Seo, Hae Ae;Kim, Dong Hwa
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.211-230
    • /
    • 2016
  • The study aimed to investigate the characteristics of algebraic thinking of the mathematically gifted students and search for how to teach algebraic thinking. Research subjects in this study included 93 students who applied for a science gifted education center affiliated with a university in 2015 and previously experienced gifted education. Students' responses on an algebraic item of a creative thinking test in mathematics, which was given as screening process for admission were collected as data. A framework of algebraic thinking factors were extracted from literature review and utilized for data analysis. It was found that students showed difficulty in quantitative reasoning between two quantities and tendency to find solutions regarding equations as problem solving tools. In this process, students tended to concentrate variables on unknown place holders and to had difficulty understanding various meanings of variables. Some of students generated errors about algebraic concepts. In conclusions, it is recommended that functional thinking including such as generalizing and reasoning the relation among changing quantities is extended, procedural as well as structural aspects of algebraic expressions are emphasized, various situations to learn variables are given, and activities constructing variables on their own are strengthened for improving gifted students' learning and teaching algebra.

An Application of Multivariate Generalizability Theory to Teacher Recommendation Letters and Self-introduction Letters Used in Selection of Mathematically Gifted Students by Observation and Nomination (관찰·추천제에 의한 수학영재 선발 시 사용되는 교사추천서와 자기소개서 평가에 대한 다변량 일반화가능도 이론의 활용)

  • Kim, Sung Yeun;Han, Ki Soon
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.671-695
    • /
    • 2013
  • This study provides an illustrative example of using the multivariate generalizability theory. Specifically, it investigates relative effects of each error source, and finds optimal measurement conditions for the number of items within each content domain that maximizes the reliability-like coefficients, such as a generalizability coefficient and an index of dependability. The method is based on teacher recommendation letters and self-introduction letters, using an analytic scoring method in the context of selection of mathematically gifted students by observation and nomination. This study analyzed data from the 2011 academic year in the science education institute for the gifted, which is attached to the university located in the Seoul metropolitan area. It should be noted that the optimal scoring structures of this study are not generalizable to other selection instruments. However, the methodology applied in this study can be utilized to find optimal measurement conditions for the number of raters, the number of content domains, and the number of items in other selection instruments self-developed by many institutions including: the education institutes for the gifted at provincial offices of education, gifted classes, and the science education institutes for the gifted attached to universities in general. In addition, the methodology will provide bases for making informed decisions in selection instruments of the gifted based on measurement traits.

A Study of Secondary Mathematics Materials at a Gifted Education Center in Science Attached to a University Using Network Text Analysis (네트워크 텍스트 분석을 활용한 대학부설 과학영재교육원의 중등수학 강의교재 분석)

  • Kim, Sungyeun;Lee, Seonyoung;Shin, Jongho;Choi, Won
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.465-489
    • /
    • 2015
  • The purpose of this study is to suggest implications for the development and revision of future teaching materials for mathematically gifted students by using network text analysis of secondary mathematics materials. Subjects of the analysis were learning goals of 110 teaching materials in a gifted education center in science attached to a university from 2002 to 2014. In analysing the frequency of the texts that appeared in the learning goals, key words were selected. A co-occurrence matrix of the key words was established, and a basic information of network, centrality, centralization, component, and k-core were deducted. For the analysis, KrKwic, KrTitle, and NetMiner4.0 programs were used, respectively. The results of this study were as follows. First, there was a pivot of the network formed with core hubs including 'diversity', 'understanding' 'concept' 'method', 'application', 'connection' 'problem solving', 'basic', 'real life', and 'thinking ability' in the whole network from 2002 to 2014. In addition, knowledge aspects were well reflected in teaching materials based on the centralization analysis. Second, network text analysis based on the three periods of the Mater Plan for the promotion of gifted education was conducted. As a result, a network was built up with 'understanding', and there were strong ties among 'question', 'answer', and 'problem solving' regardless of the periods. On the contrary, the centrality analysis showed that 'communication', 'discovery', and 'proof' only appeared in the first, second, and third period of Master Plan, respectively. Therefore, the results of this study suggest that affective aspects and activities with high cognitive process should be accompanied, and learning goals' mannerism and ahistoricism be prevented in developing and revising teaching materials.