• Title/Summary/Keyword: 고차 시간-주파수

Search Result 24, Processing Time 0.019 seconds

Analysis of the Cylindrical Metamaterial Slab Using the Higher Order-mode Finite Difference Time Domain Method (고차모드 시간영역 유한차분법을 이용한 원통형 메타물질 Slab의 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • In this paper, the higher order FDTD(Finite-Difference Time-Domain) method is used to obtain the frequency response characteristics of the cylindrical metamaterial slab. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity and the dispersive FDTD equation which has the dispersive effective dielectric constant and permeability are derived to analyze the metamaterials. This derived dispersive FDTD equation has no errors in analyzing the dielectric materials but there are some time and frequency errors in case of analyzing the metamaterials. We used the higher order FDTD method to obtain the accurate frequency response of the metamaterials. Comparisons between the dispersive FDTD method and the higher order FDTD method are performed in this paper also. From the results, we concluded that more accurate frequency response for various metamaterials applications can be obtained using the proposed method in this paper.

Underwater Transient Signal Detection Using Higher-order Statistics and Wavelet Analysis (고차통계 기법과 웨이브렛을 이용한 수중 천이신호 탐지)

  • 조환래;오선택;오택환;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.670-679
    • /
    • 2003
  • This paper deals with application of wavelet transform, which is known to be good for time-frequency analysis, in order to detect the underwater transient signals embedded in ambient noise. A new detector of acoustic transient signals is presented. It combines two detection tools: wavelet analysis and higher-order statistics. Using both techniques, the detection of the transient signal is possible in low signal to noise ratio condition. The proposed algorithm uses the wavelet transform of a partition of the signal on frequency domain, and then higher-order statistics tests the Gaussian nature of the segments.

Nonlinear System Estimation Using Higher Order Spectra of I.I.D. Signals (I.I.D. 신호의 고차 스펙트럼을 이용한 비선형 시스템 추정)

  • 조용수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.15-22
    • /
    • 1992
  • i.i.d 신호의고차 모멘트와 스펙트럼의 성질에 대하여 4차까지 고찰하였으며 이의 결과를 이용하 여 2차 Volterra 급수로 표시되고, i.i.d. 입력 신호를 갖는 시불변 비선형 시스테므이 파라메타들을 추정 하는 알고리즘을 시간 영역과 주파수 영역에서 각각 제안하였다. 비록 2차 Volterra 급수가 i.i.d. 입력 신호에 대하여 orthogonal 모델이 아닐지라도 입력 신호의 각종 시간지연에 대한 모멘트나 역행렬의 계 산등이 요구되지 않으며 선형 전달함수와 2차 전달함수를 추정할 수 있는 알고리즘이 존재하는 것을 보 았다.

  • PDF

Fast Carrier Recovery for High-Order QAM Systems (고차의 QAM 시스템을 위한 고속 반송파 복원)

  • Lee, Chul-Soo;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.371-376
    • /
    • 2010
  • In this paper, we propose a new fast carrier recovery algorithm for high-order QAM systems. The proposed algorithm detects carrier frequency offset from the phase differences among the received symbols directly and combines it with the conventional carrier recovery, so that it is possible to achieve the carrier recovery with wide tracking range and fast acquisition time. Simulation results show that the proposed carrier recovery method reduces acquisition time at large frequency offset and low signal-to-noise ratio (SNR).

Dispersion Analysis of Higher-Order Modes for Planar Transmission Lines Using the 2-Dimensional Finite-Difference Time-Domain Method (2차원 유한차분-시간영역 방법을 이용한 평면형 전송선로의 고차 모드 분산 특성 해석)

  • 전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.847-854
    • /
    • 1999
  • In this paper, we have analysed frequency-dispersion characteristics of higher-order modes for uniform planar transmission lines, using the 2-dimensional finite-difference time-domain method. The method presented in this paper uses both informations of amplitude and phase of the electromagnetic spectrum to determine resonant frequencies, while methods previously reported use the magnitude only. This algorithm is very useful when a resonant mode has a relatively small magnitude, where the identification of the resonant mode is quite difficult. Numerical results show that a strip line supports few higher-order modes within the frequency range of 20 GHz, but there occur many higher-order modes in the structure of grounded coplanar waveguide, where resonant frequencies of the first higher-order mode is very close to those of the fundamental mode and there occur lots of very adjacent higher-order modes. As in this example, for the analysis of planar transmission lines which support many resonant modes very close each other, the method presented in this paper can be applied very efficiently.

  • PDF

A Design of PID Controller Using Reduced Model in Frequency Domain (주파수영역에서 축소모델을 이용한 PID 제어기 설계)

  • Kim, Jong-Gun;Kim, Ju-Sik;Jeon, Byeong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • This paper proposes a design method of PID controller for achieving the desired specifications in the frequency domain via the reduced model of a high-order model with time delay. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds. Four examples are given to illustrate the feasibilities of the suggested schemes.

A Model Reduction of Linear Systems with Time Delay in Frequency Domain (주파수영역에서 시가지연을 갖는 선형시스템의 모델축소)

  • Kim, Ju-Sik;Kim, Jong-Gun;Ryu, Jeong-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.176-182
    • /
    • 2004
  • This paper proposes a frequency transfer function synthesis for simplifying a high-order model with time delay to a low-order model. The model reduction is based on minimizing the m function weighted by the numerator polynomial of reduced systems. The proposed methods provide a better fitness within low frequency. Four examples are given to illustrate the feasibilities of the suggested schemes.

A Study on Health Monitoring of a Refrigerator Compressor Based on Higher Order Time-Frequency Analysis and Artificial Neural Network (고차 시간-주파수 해석과 신경망 회로를 이용한 냉장고 압축기의 건전성 연구)

  • Shin, Tae-Jin;Lee, Sang-Kwon;Jang, Ji Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1313-1320
    • /
    • 2012
  • Condition monitoring of the reciprocating compressor is important task. As a traditional method, health monitoring system of refrigerator depends on decision of a skilled person based on his experience. However, the skilled person cannot monitor all the compressors completely. If a sampled compressor is faulty, thousands of compressors manufactured at that place are regarded as faulty compressors. Therefore it is necessary to monitor all compressors in the production line. In the paper real time health monitoring system is developed based on high order time frequency method and artificial neural network. The system is installed in the mass production line. The result of the application has been very successful, and currently the system is working very well on the production line.

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

Parameter Identification of Nonlinear Dynamic Systems using Frequency Domain Volterra model (비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용)

  • Paik, In-Yeol;Kwon, Jang-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.33-42
    • /
    • 2005
  • Frequency domain Volterra model is applied to nonlinear parameter identification procedure for dynamic systems modeled by nonlinear function. The frequency domain Volterra kernels, which correspond io linear, quadratic, and cubic transfer functions in lime domain, are incorporated in nonlinear parametric identification procedure. The nonlinear transfer functions, which can be derived from the Volterra series representation of the nonlinear differential equation of the system by Schetzen's method(1980), are directly used for modeling input output relation. The error is defined by the difference between the observed output and the estimated output which is calculated by substituting the observed input to nonlinear frequency domain model. The system parameters are searched by minimizing the error. Volterra model guarantees enough accuracy and convergence and the estimated coefficients have a good agreement with their actual values not only in the linear frequency region but also in the legion where the $2^{nd}\;or\;3^{rd}$ order nonlinearity is dominant.