• Title/Summary/Keyword: 고유진동수 해석

Search Result 1,010, Processing Time 0.027 seconds

Dynamic Analysis of Cantilevered Curved Beam using Model Analysis Method (모우드 해석법을 이용한 캔틸레버 곡선보의 동적해석)

  • Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.55-62
    • /
    • 2007
  • The Paper presents three methods for calculating the natural frequencies of cantilevered curved Beams. A summary is given of the development of two techniques: theoretic value and the result of the experiment. Theoretic value of curved beam vibration analysis are derived from complementary variational principles assuming as unknown stress-displacement result fields. In order to perform free vibration analysis of curved beam, Aluminum-made cantilevered curved beam is used in experiment. Experimental input and output signals are derived from the impact hammer and the one accelemeter are amplificated by an amplifier. The validity of the modal analysis method

  • PDF

Estimation of Natural frequencies in Osteoporotic Mouse Femur: A finite Element Analysis and a Vibration Test (골다공증에 걸린 쥐 대퇴골의 고유진동수 예측: 유한 요소 해석 및 진동 실험)

  • Kim, Yoon-Hyuk;Byun, Chang-Hwan;Oh, Taek-Yul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In this study, a finite element analysis and a vibration test were performed to estimate the natural frequencies of mouse femurs with osteoporosis. Three groups of the femurs include the osteoporotic group, the treated group and the normal group. For the finite element analysis, the micro finite element model of the femur was reconstructed using the Micro-CT images and the Voxel mesh generation algorithm. In the vibration test, the natural frequencies were measured by the mobility test. from the results, the averaged natural frequencies in the osteoporotic group were the highest, followed by those in the treated group. The finite element models were validated within 15% errors by comparing the natural frequencies in the finite element analysis with those in the vibration test. The developed Micro-CT system, the Yokel mesh generation algorithm, the presented finite element analysis, and vibration test could be useful for the investigation of the structural change of the bone tissue, and the diagnosis and the treatment in the osteoporosis.

Free Vibrations of Elastica Shaped Arches with Linear Taper (선형 변단면 정확탄성곡선형 아치의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.617-624
    • /
    • 2009
  • This study deals with the free vibrations of the elastica shaped arch with linear taper. The shape of elastica is obtained from the Bernoulli-Euler beam theory. Differential equations governing free vibrations of such arch are derived and numerically solved to determine natural frequencies, in which three kinds of taper type and two kinds of end constraint, respectively, are considered. For validating the theories presented herein, the frequency parameters obtained in this study are compared to those of SAP 2000. As results of the numerical analyses, effects of end constraint, taper type, slenderness ratio and section ratio on the lowest four non-dimensional frequency parameters are extensively investigated.

Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section (1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 1989
  • The main purpose of the present paper is to present both the fundamental frequency and some higher free vibration frequencies for circular arches with variable section, in which rotatory inertia is included. The differential equations are derived for the in-plan free vibration of elastic circular arches with variable section. These equations were solved numerically for the linear variable circular cross-section with clamped-clamped end constraint. As the numerical results, the four lowest nondimensional natural frequencies presented as functions of the nondimensional system parameters : the end moment of inertia to crown moment of inertia ratio, the slenderness ratio, and the opening angle. The effect of rotatory inertia on the nondimensional natural frequency is also reported.

  • PDF

제어봉구동장치의 고유진동수에 대한 민감도 해석

  • 김민규;김인용;우호길
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.909-914
    • /
    • 1998
  • 제어봉구동장치는 원자력발전소에서 사용되는 기기로서, 가늘고 긴 수직 외팔보의 형상을 하고 있어 지진과 같은 동적하중에 취약한 구조를 갖고 있다. 따라서 발전소가 건설되는 지반의 다양한 지진하중에 대한 동적해석이 중요한 설계요건으로 되어 있다. 본 논문에서는 제어봉구동장치의 고유진동수를 제어하기 위한 기초연구로써 제어봉구동장치의 설계변경이 동적특성에 미치는 영향, 즉 고유진동수에 대한 설계 민감도 해석을 수행하였다. 해석 방법으로는 유한요소 프로그램의 구조 해석 결과에 변분법을 이용한 설계 민감도법을 사용하였다. 해석 결과는 유한차분에의한 결과와 일치함을 보였고, 제어봉구동장치의 초기설계 단계에서 유용한 정보로 활용할 수 있음을 확인하였다. 또한 이러한 결과는 최적설계 프로그램등과 연계되어 구조물의 설계 개선에 많은 도움을 줄 것으로 판단된다.

  • PDF

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting (선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석)

  • Yeon-Ho Kim;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.48-55
    • /
    • 2001
  • In this paper, sensitivity analysis for the coupled axial and torsional undamped free vibration of ship propulsion shafting is proposed. The purpose of this study is to effectively and optimally design the resonance frequencies of propulsion shafting affecting barred speed range of main engine by modifying the diameters of intermediate and propeller shafts. The presented method is validated by the sensitivity analysis for the natural frequencies of propulsion shafting of two real large merchant ships. In addition, the changes of natural frequency and resonance main engine speed are discussed in case that the diameter is varied within the range regulated by the rule of shipping register.

  • PDF

Natural frequency equations of tapered beams (변단면 보의 고유진동수 방정식 추정)

  • 이병구;오상진;모정만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.159-161
    • /
    • 1991
  • 보는 토목, 건설, 기계, 선박, 항공등 각종 구조공학 관련분야에서 가장 기본이 되는 구조단위 중에 하나이다. 구조물에서 단면을 변단면으로 하는 경우에는 재료가 절약되는 경제적 잇점이 있을 뿐만 아니라 미적 감각등 여러가지 이유로 변단면을 많이 사용하는 추세이다. 이 논문은 변단면 보의 자유진동을 해석한 결과를 통계적으로 처리하여 변단면 보의 고유진동수를 산정할 수 있는 고유진동수 방정식을 추정하는데 연구목적이 있다.

  • PDF

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Free Vibrations and Buckling Loads of Beam-Columns on Winkler-Type Foundations (Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석)

  • Jeong, Jin Seob;Lee, Byoung Koo;Oh, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • The main purpose of this paper is to present both the natural frequencies and the buckling loads of beam-columns on Winkler-type foundations. The ordinary differential equations governing the free vibrations and the buckling loads of beam-columns on Winkler-type foundation are derived as nondimensional forms. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equations and to determine the eigenvalues(natural frequencies and buckling loads), respectively. Hinged-hinged and damped-clamped end constraints are applied in numerical examples. The relation between frequency parameter and elastic foundation parameter is presented in figure. The effects of axial loads on the natural frequencies of beam-columns on elastic foundations are investigated and the relation between buckling load parameter and elastic foundation parameter is also analyzed. The relation between foundation rested ratio and frequency parameter, buckling load parameter are investigated. The beam-columns on non-homogeneous elastic foundation are analyzed and typical mode shapes are also presented.

  • PDF