Browse > Article
http://dx.doi.org/10.7734/COSEIK.2020.33.4.245

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure  

Kim, Jeongsoo (Korea BIM Research Center, Department of Smart Construction, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.33, no.4, 2020 , pp. 245-253 More about this Journal
Abstract
In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.
Keywords
pile-soil interaction; wind turbine monopile foundation; natural frequency; resonance safety check;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lee, D.I., Park, S.Y., Cho, Y.W., Kim, H.S. (2016) Development of Concrete Supporting Structure Design Using Suction Foundation in Offshore Wind Farms, Yooshin Technical Report, 23, pp.45-56.
2 Smith, I.M., Griffiths, D.V. (2004) Programming the Finite Element Method, 4th, John Wiley & Sons, Chichester, England, pp.25-29.
3 Zaaijer, M. (2002) Foundation Models for the Dynamic Response of Offshore Wind Turbines, Marine Renewable Energy Conference, Newcastle, UK.
4 ABAQUS (2013) ABAQUS user's and Theory Manuals, ver.6.13. Rhode Isloand: Hibbitt, Karlsson & Sorensen, Inc.
5 Adhikari, S., Bhattacharya, S. (2012) Dynamic Analysis of Wind Turbine Towers on Flexible Foundations, Shock & Vib., 19, pp.37-56.   DOI
6 Bae, K.T., Kim, Y.S., Jin, B.M., Lee, J.P., Kim, J.Y. (2016) A Case Study on Concrete Foundation Design for offshore Wind Power, KSCE 2016 Convention, pp.178-179.
7 Bush, E., Manuel, L. (2009) The Influence of Foundation Modeling Assumptions on Long-Term Load Prediction for Offshore Wind Turbines, Proc. of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu Hawaii, May.
8 Ford, W. (2014) Numerical Linear Algebra with Applications: Using Matlab, Academic Press, 1st Edition, pp.379-438.
9 Byrne, B.W., McAdam, R.A., Burd, H.J., Houlsby, G.T., Martin, C.M., Beuckelaers, W.J.A.P., Zdravkovic, L., Taborda, D.M.G, Potts, D.M., Jardine, R.J., Ushev, E., Liu, T., Abadias, D., Gavin, K., Igoe, D., Doherty, P., Skov Gretlund, J., Pacheco Andrade, M., Muir Wood, A., Schroeder, F.C., Turner, S., Plummer, M.A.L. (2017) PISA: New Design Methods for Offshore Wind Turbine Monopiles, Revue Francaise de Geotechnique, 158(3), pp.142-161.
10 Darvishi-Alamouti, S., Bahaari, M.R., Moradi, M. (2017) Natural Frequency of Offshore Wind Turbines on Rigid and Flexible monopiles in Cohesionless Soils with Linear Stiffness Distribution, Appl. Ocean Res., 68, pp.91-102.   DOI
11 Jang, H.S., Kim, H.S., Kwak, Y.M., Park, J.H. (2013) Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil, J. Korean Soc. Steel Constr., 25(4), pp.421-430.   DOI
12 Jang, H.S., Nam, H.W., Kwak, Y.M., Yoon, S.W., Kim, H.S. (2015) The Influence of Suction Foundation Model for Offshore Wind Turbine, J. Korean Soc. Coast. & Ocean Eng., 27(5), pp.339-344.   DOI
13 Jang, Y., Cho, S., Choi, C. (2014) Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness, J. Korean Geosynthetics Soc., 15(9), pp.21-31.
14 Jung, S., Kim, S.R., Lee, J., Lee, C.H. (2014) Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head, J. Korean Geosynthetics Soc., 13(4), pp.21-31.   DOI
15 Kim, B.J., Plodpradit, P., Suthasupradit, S., Kim, H.G., Kim, K.D. (2017) Ship Collision Analysis of Concrete Offshore Wind Turbine Structure Supported with Suction Pile, J. Wind Energy, 8(2), pp.45-56.   DOI
16 Kim, J., Kim, M.K., Jung, S.D. (2015) Two-Dimensional Numerical Tunnel Model using a Winkler based Beam Element and Its Application into Tunnel Monitoring Systems, Clust. Comput., 18(4), pp.707-719.   DOI
17 Kim, N.H., Bang, U.S., Lee, K.J. (2006) A Study on Lateral Movement of Drilled Shaft Considering Stratification, Yooshin Technical Bulletin, 13, pp.154-163.
18 Kim, D.H., Park, J.J., Chang, Y.C., Jeong, S.S. (2018) Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles, J. Korean Geotechnical Soc., 34(12), pp.43-58.   DOI
19 Kim, J., Jeong, Y.J., Park, M.S., Song, S. (2019) Effect of Soil Stiffness Estimation on Natural Frequency of Monopiles, KSCE 2019 Convention, pp.218-219.
20 Kim, P.H., Kang, S.Y., Lee, Y.W., Kang, Y.J. (2016a) Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile Interaction to Evaluate Resonant Avoidance Frequency, J. Korea Acad.-Ind. Cooperation Soc., 17(4), pp.734-742.   DOI
21 Kim, M.Y., Yun, H.T., Kwak, T.Y. (2002) Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation, J. Comput. Struct. Eng. Inst. Korea, 15(3), pp.463-469.
22 Kim, W.S., Jeong, Y., Kim, K., Kim, K.J., Lee, J.H. (2016b) Seismic Analysis for Multi-pile Concrete Foundation in 5MW class Offshore Wind Turbine, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.209-218.   DOI
23 Korean Geotechnical Society(KGS) (2014) Design of Offshore Wind Turbine Foundation for Geotechnical Engineers, CIR, pp.238-254.
24 Kurabayashi, H., Cho, S.K. (2016) Vibration Control Device, KR Patent, No.1016584900000.
25 Limkatanyu, S., Kuntiyawichai, K., Spacone, E., Kwon, M. (2013) Nonlinear Winkler-Based Beam Element with Improved Displacement Shape Functions, KSCE J. Civil Eng., 17(4), pp.192-201.   DOI