• Title/Summary/Keyword: 고속 CMOS 회로

Search Result 241, Processing Time 0.026 seconds

8bit 100MHz DAC design for high speed sampling (고속 샘플링 8bit 100MHz DAC 설계)

  • Lee, Hun-Ki;Choi, Kyu-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1241-1246
    • /
    • 2005
  • This paper described an 8bit, 100Msample/s CMOS D/A converter using a glich-time minimization technique for the high-speed sampling rate of 100MHz level. The proposed DAC was implemented in 0,35um Hynix CMOS technology and adopts a current mode architecture to optimize sampling rate, resolution, chip area. The DAC linear characteristics was similar to the proposed specification the prototype error between DNL and INL is less than ${\pm}0.09LSB$ respectively. Also, fab-out chip was tested, analysed the cause of error operation, and proposed the field considerations for chip test.

  • PDF

Design of a 3.3V 8-bit 200MSPS CMOS folding/interpolation ADC (3.3V 8-bit 200MSPS CMOS folding/interpolation ADC의 설계)

  • Song, Min Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.44-44
    • /
    • 2001
  • 본 논문에서는 CMOS로 구현된 3.3V 8-bit 200MSPS의 Folding / Interpolation 구조의 A/D 변환기를 제안한다. 회로에 사용된 구조는 FR(Folding Rate)이 8, NFB(Number of Folding Block)가 4, Interpolation rate 이 8이며, 분산 Track and Hold 구조를 회로를 사용하여 Sampling시 입력주파수를 Hold하여 높은 SNDR을 얻을 수 있었다. 고속동작과 저 전력 기능을 위하여 향상된 래치와 디지털 Encoder를 제안하였고 지연시간 보정을 위한 회로도 제안하였다. 제안된 ADC는 0.35㎛, 2-Poly, 3-Metal, n-well CMOS 공정을 사용하여 제작되었으며, 유효 칩 면적은 1070㎛×650㎛ 이고, 3.3V전압에서 230mW의 전력소모를 나타내었다. 입력 주파수 10MHz, 샘플링 주파수 200MHz에서의 INL과 DNL은 ±1LSB 이내로 측정되었으며, SNDR은 43㏈로 측정되었다.

Design of the LDO Regulator with 2-stage wide-band OTA for High Speed PMIC (고속 PMIC용 2단 광대역 OTA방식의 LDO 레귤레이터 설계)

  • Kwon, Bo-Min;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1222-1228
    • /
    • 2010
  • This paper presents a design of the CMOS LDO regulator with a fast transient response for a high speed PMIC(power management integrated circuit). Proposed LDO regulator circuit consists of a reference voltage circuit, an error amplifier and a power transistor. 2-stage wide-band OTA buffer between error amplifier and power transistor is added for a good output stability. Although conventional source follower buffer structure is simple, it has a narrow output swing and a low S/N ratio. In this paper, we use a 2-stage wide-band OTA instead of source follower structure for a buffer. From HSPICE simulation results using a $0.5{\mu}m$ CMOS standard technology, simulation results were 16 mV/V line regulation and 0.007 %/mA load regulation.

A Design of 250-MSamples/s 8-Bit Folding Analog to Digital Converter using Transistor Differential Pair Folding Technique (트랜지스터 차동쌍 폴딩 기법을 적용한 250-MSamples/s 8-비트 폴딩 아날로그-디지털 변환기의 설계)

  • 이돈섭;곽계달
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.35-42
    • /
    • 2004
  • A CMOS folding ADC with transistor differential pair folding circuit for low power consumption and high speed operation is presented in this paper. This paper explains the theory of transistor differential pair folding technique and many advantages compared with conventional folding and interpolation circuits. A ADC based on transistor differential pair folding circuit uses 16 fine comparators and 32 interpolation resistors. So it is possible to achieve low power consumption, high speed operation and small chip size. Design technology is based on fully standard 0.25${\mu}{\textrm}{m}$ double poly 2 metal n-well CMOS process. A power consumption is 45mW at 2.5V applied voltage and 250MHz sampling frequency. The INL and DNL are within $\pm$0.15LSB and $\pm$0.15LSB respectively. The SNDR is approximately 50dB at 10MHz input frequency.

A Design of CMOS Analog-Digital Converter for High-Speed . Low-power Applications (고속 . 저전력 CMOS 아날로그-디지탈 변환기 설계)

  • Lee, Seong-Dae;Hong, Guk-Tae;Jeong, Gang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.66-74
    • /
    • 1995
  • A 8-bit 15MHz CMOS subranging Analog-to-Digital converter for high-speed, low-power consumption applications is described. Subranging, 2 step flash, A/D converter used a new resistor string and a simple comparator architecture for the low power consumption and small chip area. Comparator exhibites 80dB loop gain, 50MHz conversion speed, 0.5mV offset and maximum error of voltage divider was 1mV. This Analog-to-Digital converter has been designed and fabricated in 1.2 m N-well CMOS technology. It consumed 150mW power at +5/-5V supply and delayed 65ns. The proposed Analog-to-Digital converter seems suitable for high- speed, low-power consumption, small area applications and one-chip mixed Analog- Digital system. Simulations are performed with PSPICE and a fabricated chip is tested.

  • PDF

A Mismatch-Insensitive 12b 60MS/s 0.18um CMOS Flash-SAR ADC (소자 부정합에 덜 민감한 12비트 60MS/s 0.18um CMOS Flash-SAR ADC)

  • Byun, Jae-Hyeok;Kim, Won-Kang;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.17-26
    • /
    • 2016
  • This work proposes a 12b 60MS/s 0.18um CMOS Flash-SAR ADC for various systems such as wireless communications and portable video processing systems. The proposed Flash-SAR ADC alleviates the weakness of a conventional SAR ADC that the operation speed proportionally increases with a resolution by deciding upper 4bits first with a high-speed flash ADC before deciding lower 9bits with a low-power SAR ADC. The proposed ADC removes a sampling-time mismatch by using the C-R DAC in the SAR ADC as the combined sampling network instead of a T/H circuit which restricts a high speed operation. An interpolation technique implemented in the flash ADC halves the required number of pre-amplifiers, while a switched-bias power reduction scheme minimizes the power consumption of the flash ADC during the SAR operation. The TSPC based D-flip flop in the SAR logic for high-speed operation reduces the propagation delay by 55% and the required number of transistors by half compared to the conventional static D-flip flop. The prototype ADC in a 0.18um CMOS demonstrates a measured DNL and INL within 1.33LSB and 1.90LSB, with a maximum SNDR and SFDR of 58.27dB and 69.29dB at 60MS/s, respectively. The ADC occupies an active die area of $0.54mm^2$ and consumes 5.4mW at a 1.8V supply.

A Study on the IC, Implementation of High Speed Multiplier for Real Time Digital Signal Processing (실시간 디지털 신호 처리용 고속 MULTIPLIER 단일칩화에 관한 연구)

  • 문대철;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.628-637
    • /
    • 1990
  • In this paper we present on architecture for a high sppeed CMOS multiplier which can be used for real-time digital signal processing. And a synthesis method for designing highly parallel algorithms in VLSI is presented. A parallel multiplier design based on the modified Booth's algorithms and Ling's algorthm. This paper addresses the design of multiplier capable of accpting data in 2's complement notation and coefficients in 2's complement notation. Multiplier consists of an interative array of sequential cells, and are well suited to VLSI implementation as a results of their modularity and regularity. Booth's decoders can be fully tested using a relatively small number af test vector.

  • PDF

Design of ENMODL CLA for Low Power High Speed Multipier (고속 저전력 곱셈기에 적합한 ENMODL CLA 설계)

  • 백한석;한석붕
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.91-96
    • /
    • 2001
  • In this paper we propose a new ENMODL(Enhanced-NORA-MODL) CLA(Carry-Look Ahead Adder) for high speed and low power multiplier. To reduce transistor counts, area and power dissipation we developed new-approaches. The method makes use of a dynamic CMOS logic ENMODL CLA. The advantage of ENMODL is small area and high speed The speed of ENMODL CLA is invreased by 6.27 % as compared with conventional NMOCL CLA. The proposed method was verified by HSPICE simulation and layout througth 0.6${\mu}{\textrm}{m}$ CMOS process.

  • PDF

A Design of Transimpedance Amplifier for High Data Rate IrDA Application (고속 적외선 통신(IrDA)용 Transimpedance Amplifier 설계)

  • 조상익;황철종;황선영;임신일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.947-950
    • /
    • 2003
  • 본 논문에서는 고속 적외선 무선 데이터통신(IrDA) 에 사용되는 트랜스임피던스 증폭기(Transimpedance Amplifier)를 설계하였다. 트랜스임피던스 증폭기는 잡음을 최소화하기 위해 PMOS 차동 구조로 설계하였으며 입력과 출력의 피드백을 통해 주위의 빛에 의해 발생되는 photocurrent 에 의한 DC 옵셋을 제거하였다 또한 공통 게이트(CG)와 Regulated Cascode Circuit (RGC)을 추가하여 대역폭(Bandwidth)을 향상시켰다. 설계한 회로는 0.25 um CMOS 공정을 이용하였으며 트랜스임피던스 이득은 200 MHz의 대역폭에서 10 KΩ (80 dBΩ )이다. 전체 전력 소비는 18 mW이다.

  • PDF

A DC Reference Fluctuation Reduction Circuit for High-Speed CMOS A/D Converter (고속 CMOS A/D 변환기를 위한 기준전압 흔들림 감쇄 회로)

  • Park Sang-Kyu;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.53-61
    • /
    • 2006
  • In high speed flash type or pipelining type A/D Converter, the faster sampling frequency is, the more the effect of DC reference fluctuation is increased by clock feed-through and kick-back. When we measure A/D Converter, further, external noise increases reference voltage fluctuation. Thus reference fluctuation reduction circuit must be needed in high speed A/D converter. Conventional circuit simply uses capacitor but layout area is large and it's not efficient. In this paper, a reference fluctuation reduction circuit using transmission gate is proposed. In order to verify the proposed technique, we designed and manufactured 6bit 2GSPS CMOS A/D converter. The A/D converter is based on 0.18um 1-poly 5-metal N-well CMOS technology, and it consumes 145mW at 1.8V power supply. It occupies chip area of $977um\times1040um$. Experimental result shows that SNDR is 36.25 dB and INL/DNL ${\pm}0.5LSB$ when sampling frequency is 2GHz.