• Title/Summary/Keyword: 고분자 물질

Search Result 1,050, Processing Time 0.025 seconds

Sericin Enhances Secretion of Thyroglobulin in the Thyrocytes (갑상선세포에서 sericin에 의한 thyroglobulin의 분비증가)

  • Jin, Cho-Yi;Song, Seong-Hee;Go, Young-Hwa;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Yeo, Joo-Hong;Kim, Seung-Whan;Choi, Jong-Soon;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1249-1253
    • /
    • 2010
  • Sericin is a type of high molecular weight water-soluble glycoprotein surrounding fibroin (silk protein) that has been used as a cell culture supplement and accelerates cell proliferation in various serum-free media. The purpose of this study was to investigate the enhancing effect of thyroglobulin (Tg) secretion by sericin in thyrocytes, FRTL-5 cells. While Tg-mRNA expression was not enhanced, a secreted form of Tg was obviously increased by sericin. In this status, expression of both endoplasmic reticulum (ER) molecular chaperones (Bip & calreticulin) and ER membrane proteins (IRE1, PERK & ATF6) was enhanced. The proximal step of IRE1, XBP1 mRNA splicing was slightly detected however, the proximal step of PERK, phosphorylation of $eIF2{\alpha}$, was changeless. In addition, sericin enhanced cell viability by the MTT assay. The above results showing the ability of sericin to promote protein production demonstrated its potential usefulness as a new biomaterial.

Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery (탄소펠트의 산화처리 방법이 바나듐 레독스 흐름 전지의 전극 성능에 미치는 영향)

  • Ha, Dal-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Lim, Seong-Yop;Peck, Dong-Hyun;Lee, Byung-Rok;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • Carbon felt surface was modified by heat or acid treatment in order to use for the electrode of a redox-flow battery. Polymers on the surface of carbon felt was removed and oxygen-containing functional group was attached after the thermal treatment of carbon felt. Thermal treatment was better for the stability of the carbon structure than the acid treatment. Oxygen-containing functional group on the thermally treated carbon felt at 500$^{\circ}C$ was confirmed by XPS and elementary analysis. BET surface area was increased from nearly zero to 96 $m^2/g$. Thermally treated carbon felt at 500$^{\circ}C$ showed lower activation polarization than the thermally treated carbon felt at 400$^{\circ}C$ and the acid-treated carbon felt in the cyclicvoltammetry and polarization experiments. The thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt was applied for the electrode to prepare vanadium redox flow battery. Voltage efficiencies of charge/discharge were 86.6%, 89.6%, and 96.9% for the thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt, respectively.

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan (미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구)

  • Lee, Ji-yeong;Lee, Jin-ho
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.919-929
    • /
    • 2020
  • Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces (마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발)

  • Kim, Hye Rim;Baek, Seung Hee;Jin, Hye
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2013
  • Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process (미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.393-400
    • /
    • 2005
  • Hydrogen($H_2$) as a clean, and renewable energy carrier will be served an important role in the future energy economy. Several biological $H_2$ production processes are known and currently under development, ranging from direct bio-photolysis of water by green algae, indirect bio-photolysis by cyanobacteria including the separated two stage photolysis using the combination of green algae and photosynthetic microorganisms or green algae alone, dark anaerobic fermentation by fermentative bacteria, photo-fermentation by purple bacteria, and water gas shift reaction by photosynthetic or fermentative bacteria. In this paper, biological $H_2$ production processes, that are being explored in fundamental and applied research, are reviewed.

Comparing the anti-inflammatory effect of nanoencapsulated lycopene and lycopene on RAW 264.7 macrophage cell line (RAW 264.7 대식세포주에서 나노입자화 리코펜의 항염증 증진 효과)

  • Seo, Eun Young;Kim, Myung Hwan;Kim, Woo-Kyoung;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.48 no.6
    • /
    • pp.459-467
    • /
    • 2015
  • Purpose: We developed a method to load lycopene into maltodextrin and cyclodextrin in an attempt to overcome the poor bioavailability and improve the anti-inflammatory effect of this polyphenol. Methods: Nanosized lycopenes were encapsulated into biodegradable amphiphillic cyclodextrin and maltodextrin molecules prepared using a high pressure homogenizer at 15,000~25,000 psi. Cell damage was induced by lipopolysaccharides (LPS) in a mouse macrophage cell line, RAW 264.7. The cells were subjected to various doses of free lycopene (FL) and nanoencapsulated lycopene (NEL). RT-PCR was used to quantify the tumor necrosis factor (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxigenase-2 (COX-2) mRNA levels, while ELISA was used to determine the protein levels of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. Results: NEL significantly reduced the mRNA expression of IL-6 and IL-$1{\beta}$ at the highest dose, while not in cells treated with FL. In addition, NEL treatment caused a significant reduction in IL-6 and TNF-${\alpha}$ protein levels, compared to cells treated with a similar dose of FL. In addition, mRNA expression of iNOS and COX-2 enzyme in the activated macrophages was more efficiently suppressed by NEL than by FL. Conclusion: Overall, our results suggest that lycopene is a potential inflammation reducing agent and nanoencapsulation of lycopene can further improve its anti-inflammatory effect during tissue-damaging inflammatory conditions.

Antithrombin and Thrombosis Prevention Activity of Buckwheat Seed, Fagopyrum esculentum Moench (메밀 종자의 항트롬빈 활성과 혈전증 예방효과)

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho;Kwon, Gi-Seok;Ryu, Hee-Young;Kum, Eun-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2006
  • Direct thrombin inhibitor, which is effective to prevent or cure the thrombosis, has been investigated in worldwide. In this study, we tried to screen antithrombosis agent from edible or medicinal plant. A strong antithrombin activity was identified from methanol or $95\%$ ethanol extract of buckwheat seeds. The solvent fractionation of buckwheat extracts using hexane, ethylacetate, butanol revealed that the butanol fraction has a prominent antithrombin activity. Thrombin time (blood-clot formation time) exceeded to over $2,000\%$ by addition of the butanol fraction at concentration of $312.5{\mu}g/mL$, whereas thrombin time extended to $336\%$ by addition of aspirin at concentration of $1,500{\mu}g/mL$. The butanol fraction showed anthrone-positive and ninhydrine-negative reaction. The active components were heat-liable, acid-unstable non-proteinous macromolecules (>30 KD). In vivo analysis using ICR male mouse showed that the buckwheat extract was superior than the aspirin in pulmonary thrombosis, KCN-induced coma and death. Our results suggest that the buckwheat is a potential as an antithrombosis agent and medicinal food.

Crystallization Behavior and Mechanical Properties of High Density Polyethylene/metallocene catalyzed Poly(ethylene-co-octene) Blends (고밀도 폴리에틸렌/폴리에틸렌-옥텐 공중합체 블렌드의 결정화 거동 및 기계적 물성에 관한 연구)

  • Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3108-3113
    • /
    • 2013
  • Compatibility between mLLDPE and HDPE was investigated by observing the crystallization behavior and mechanical properties of their blends. HDPE and mLLDPE blends were prepared by a melt-blending with compositions of 100/0, 80/20, 60/40, 40/60/ 20/80 and 0/100. Four different mLLDPEs containing various octene contents (4.1, 6.8, 9.8 및 12.5 mol.%) were investigated. The melting temperature and crystallization peak temperature of the blends were measured by DSC and the mechanical properties were measured in an universal testing machine. By observation that the melting and crystallization peak temperatures of one component were affected by its counterparts, it was revealed that HDPE and mLLDPE are miscible or at leat partially miscible at molten state. It was also found that the crystalline phase of mLLDPE contains HDPE crystals. However. it was not clear that mLLDPE was cocrystalized in the crystalline phase of HDPE. By various investigation with DSC and mechanical properties, it was concluded that the compatibility between mLLDPE and HDPE decreases with the octene content in the mLLDPE.

Analysis of Phytochemicals in Popular Medicinal Herbs by HPLC and GC-MS (HPLC와 GC/MS를 활용한 약용식물 유래 phytochemicals 분석)

  • Cho, Hyun-Jung;Yoo, Dong-Chan;Cho, Hyun-Nam;Fan, Lu-An;Kim, Hee-Joon;Khang, Kong-Won;Jeong, Ho-Soon;Yang, Seun-Ah;Lee, In-Seon;Jhee, Kwang-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.277-282
    • /
    • 2008
  • Oriental herbs are reported as having potent functions for preventing many types of diseases. They also appear to have positive effects and potential capabilities for skin care. Among the many oriental herbs that are available, we chose to analyze four medicinal herbs, Korean red ginseng, Artemisia capillaries Thunb, Schizonepeta tenuifolia Briq, and Foeniculum vulgare Mill, because all are popular and considered as favorite medicinal plants in Korea. Extracts of the herbs were obtained by various methods such as using distilled water, ethyl ether, methanol, ethanol, benzene, 1-butanol, and chloroform. Nine phytochemicals were detected in the extracts: maltol, adenosine, b-pinene, menthone, pulegone, limonene, anethole, estragole, and fenchone, which reportedly have multi-functionalities. All phytochemicals were analyzed quantitatively by various chromatographic techniques such as HPLC and gas chromatography-mass (GC-MS) spectrometry. This article also presents the optimum conditions for extracting these 9 targeted phytochemical compounds that were derived from 4 popular oriental herbs, which could be useful for the efficient preparation of each phytochemical.