DOI QR코드

DOI QR Code

Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery

탄소펠트의 산화처리 방법이 바나듐 레독스 흐름 전지의 전극 성능에 미치는 영향

  • Ha, Dal-Yong (Department of chemical and biological engineering, Korea university) ;
  • Kim, Sang-Kyung (Fuel cell research center, Korea Institute of Energy Research) ;
  • Jung, Doo-Hwan (Fuel cell research center, Korea Institute of Energy Research) ;
  • Lim, Seong-Yop (Fuel cell research center, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Fuel cell research center, Korea Institute of Energy Research) ;
  • Lee, Byung-Rok (Fuel cell research center, Korea Institute of Energy Research) ;
  • Lee, Kwan-Young (Department of chemical and biological engineering, Korea university)
  • 하달용 (고려대학교 화공생명공학과) ;
  • 김상경 (한국에너지기술연구원 연료전지연구단) ;
  • 정두환 (한국에너지기술연구원 연료전지연구단) ;
  • 임성엽 (한국에너지기술연구원 연료전지연구단) ;
  • 백동현 (한국에너지기술연구원 연료전지연구단) ;
  • 이병록 (한국에너지기술연구원 연료전지연구단) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Published : 2009.08.28

Abstract

Carbon felt surface was modified by heat or acid treatment in order to use for the electrode of a redox-flow battery. Polymers on the surface of carbon felt was removed and oxygen-containing functional group was attached after the thermal treatment of carbon felt. Thermal treatment was better for the stability of the carbon structure than the acid treatment. Oxygen-containing functional group on the thermally treated carbon felt at 500$^{\circ}C$ was confirmed by XPS and elementary analysis. BET surface area was increased from nearly zero to 96 $m^2/g$. Thermally treated carbon felt at 500$^{\circ}C$ showed lower activation polarization than the thermally treated carbon felt at 400$^{\circ}C$ and the acid-treated carbon felt in the cyclicvoltammetry and polarization experiments. The thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt was applied for the electrode to prepare vanadium redox flow battery. Voltage efficiencies of charge/discharge were 86.6%, 89.6%, and 96.9% for the thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt, respectively.

레독스 흐름 전지의 전극으로 사용하기 위해 탄소펠트를 열처리와 산처리 방법으로 산화 개질하였다. 열중량 분석결과 열처리 또는 산처리에 의하여 탄소펠트의 섬유 표면에 고분자 물질이 제거되고 산소 관능기가 도입된 것을 확인할 수 있었으며 습식 방법인 산처리 방법보다 건식방법인 열처리 방법이 기계적 안정성을 유지하는데 효과적인 처리 방법으로 나타났다. XPS, 원소분석을 통하여 500$^{\circ}C$에서 4시간 열처리한 탄소펠트의 표면에 산소 관능기가 부가된 것을 확인하였으며 질소흡착실험에서 거의 없던 표면적이 96 $m^2/g$로 증가한 것을 알 수 있었다. CV실험 및 분극 실험을 수행한 결과 500$^{\circ}C$ 열처리 전극의 활성화 저항이 가장 낮게 나타났다. 산처리한 탄소펠트와 400$^{\circ}C$, 500$^{\circ}C$에서 열처리한 탄소펠트를 이용하여 바나듐 레독스 흐름 전지를 구성하고 충/방전 실험을 실시한 결과 충/방전 전압효율이 산처리 전극의 경우 86.6%, 400$^{\circ}C$ 열처리 전극의 경우 89.6%, 500$^{\circ}C$ 열처리 전극의 경우 90.6%로 500$^{\circ}C$ 열처리 전극이 가장 우수하였다.

Keywords

References

  1. M. S. Kazacos, M. Cheng, and M. Kazacos, 'Vanadium redox cell electrolyte optimization studies', J. Appl. Electrochem, 20, 463 (1990) https://doi.org/10.1007/BF01076057
  2. M. S. Kazacos, D. Kasherman, D. R. Hong, and M. Kazacos, 'Characteristics and performance of 1kW UNSW Vanadium redox battery', J. Power Sources, 25, 399 (1991) https://doi.org/10.1016/0378-7753(91)80058-6
  3. E. Sum and M. S. Kazacos, 'A study of the V(II)/V(III) redox couple for redox flow cell application', J. Power Sources, 15, 179 (1985) https://doi.org/10.1016/0378-7753(85)80071-9
  4. L. H. Thaller, 'Electrically rechargeable redox flow cell', NASA TMX-71540, U. S. Dept of Energy, (1974)
  5. A. Heintz and C. Illbenberger, 'hermodynamics of vanadium redox flow batteries. Electrochemical and Calorimetric investigation', Ber. Bungens. Phys. Chem., 102, 1401 (1998) https://doi.org/10.1002/bbpc.199800009
  6. M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez, and A. Aldaz, 'Optimization studies on a Fe/Cr redox flow battery', J. Power Sources, 39, 147 (1992) https://doi.org/10.1016/0378-7753(92)80133-V
  7. I. Negish, J. Fukui, H. Gotah, H. Kaneko, K. Nozaki, and T. Ozawa, 'electrolytes for redox flow battery', US4814241, (1989)
  8. D. G. Oei, 'Permeation of vanadium cations through anionic and cationic membranes', J. Appl. Electrochem., 15, 231 (1985) https://doi.org/10.1007/BF00620938
  9. Q. Luo, H. Zhang, J. Chen, P. Qian, and Y. Zhai, 'Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications', J. Membrane Science, 311, 98 (2008) https://doi.org/10.1016/j.memsci.2007.11.055
  10. J. Xi, Z. Wu, X. Qiu, and L. Chen, 'Nafion/SiO2 hybrid membrane for vanadium redox flow battery', J. Power Sources, 166, 531 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.069
  11. T. Sukkar and M. Skyllas-Kazacos, 'Water transfer behavior across cation exchange membranes in the vanadium redox battery', J. Memb. Sci., 222, 235 (2003) https://doi.org/10.1016/S0376-7388(03)00309-0
  12. T. Sukkar and M. Skyllas-Kazacos, 'Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery', J. Memb. Sci., 222, 249 (2003) https://doi.org/10.1016/S0376-7388(03)00316-8
  13. P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao, and B. Yi, 'Characteristics and performance of 10 kW class all-Vanadium redox-flow battery stack', J. Power Sources, 162, 1416 (2006) https://doi.org/10.1016/j.jpowsour.2006.08.016
  14. J. Power SourcesLi X, Huang K, and Liu S, 'Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution', Journal of Central South University of Technology, 14, 51 (2007) https://doi.org/10.1007/s11771-007-0011-6
  15. B. Sun and M. Skyllas-Kazacos, 'Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment', Electrochimica Acta, 37, 1253 (1992) https://doi.org/10.1016/0013-4686(92)85064-R
  16. B. Sun and M. Skyllas-Kazacos, 'Chemical modification of graphite electrode materials for vanadium redox flow battery application - II. Acid treatments', Electrochimica Acta, 37, 2459 (1992) https://doi.org/10.1016/0013-4686(92)87084-D
  17. C. H. Ryu, 'The preparation and electrochemical characteristics of the carbon/PVC composite electrode for All-Vanadium redox flow battery', Ph. D. Myongji Univ. (2001)
  18. H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, and H.Y. Chen, 'Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery', Journal of Power Sources, 184, 637 (2008) https://doi.org/10.1016/j.jpowsour.2008.04.016
  19. B. Sun, and M. Skyllas-Kazakos, 'Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution', Electrochimica Acta, 36, 513, (1991) https://doi.org/10.1016/0013-4686(91)85135-T
  20. W.H. Wang and X.D. Wang, 'Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery', Electrochimica Acta, 52, 6755, (2007) https://doi.org/10.1016/j.electacta.2007.04.121
  21. Zhong 'carbon-plastic composite electrode for vanadium redox flow battery applications', Ph. D. Thesis, Univ. New south wales (1992)
  22. K. Kinoshita, 'CarbonElectrochemical and physicochemical properties', 260, John Wiley & Sons (1987)
  23. R. O'hayre, S. W. Cha, W. Colella, and F. B. Prinz, 'Fuel Cell Fundamentals-Second edition', 238, John wiley & sons (2008)

Cited by

  1. Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1030