Browse > Article

Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces  

Kim, Hye Rim (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Baek, Seung Hee (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Jin, Hye (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.24, no.5, 2013 , pp. 443-455 More about this Journal
Abstract
Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.
Keywords
interface between two immiscible electrolyte solutions; ion transfer reaction; assisted ion transfer; ion-selective sensors; micro-water/gel interfaces;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. M. Hossain, H. H. Girault, and H. J. Lee, Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface, Bull. Korean Chem. Soc., 33, 1734 (2012).   DOI
2 S. Wilke, Impulse-response Functions of Low-through Detectors Based on the Membrane-stabilised Liquid-liquid Interface Part II. Experimental Verification, Anal. Chim. Acta, 295, 165 (1994).   DOI
3 H. J. Lee, G. Lagger, C. M. Pereira, A. F. Silva, and H. H. Girault, Amperometric Tape Ion Sensors for Cadmium(II) Ion Analysis, Talanta., 78, 66 (2009).   DOI
4 F. Marken, J. D. Watkins, and A. M. Collins, Ion-transfer- and Photo-electrochemistry at Liquid/liquid/solid Electrode Triple Phase Boundary Junctions: Perspectives, Phys. Chem. Chem. Phys., 13, 10036 (2011).   DOI
5 M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, and H. J. Lee, Amperometric Proton Selective Strip-sensors with a Microelliptic Liquid/Gel Interface for Organophosphate Neurotoxins, Electrochem. Commun., 13, 611 (2011).   DOI
6 M. M. Hossain, S. H. Lee, H. H. Girault, V. Devaud, and H. J. Lee, Voltammetric Studies of Hexachromic Anion Transfer Reactions Across Micro-Water/Polyvinylchloride-2-nitrophenyloctylether Gel Interfaces for Sensing Applications, Electrochim. Acta, 82, 12 (2012).   DOI
7 I. Hatay, B. Su, F. Li, R. Partovi-Nia, H. Vrubel, X. Hu, M. Ersoz, and H. H. Girault, Hydrogen Evolution at Liquid-liquid Interfaces, Angew. Chem., 121, 5241 (2009).   DOI
8 B. Su, I. Hatay, A. Trojanek, Z. Samec, T. Khoury, C. P. Gros, J. M. Barbe, A. Daina, P.-A. Carrupt, and H. H. Girault, Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces, J. Am. Chem. Soc., 132, 2655 (2010).   DOI
9 D. Schaming, M. Hojeij, N. Younan, H. Nagatani, H. J. Lee, and H. H. Girault, Photocurrents at Polarized Liquid/Liquid Interfaces Enhanced by a Gold Nanoparticle Film, Phys. Chem. Chem. Phys., 13, 17704 (2011).   DOI
10 A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications, 2nd Ed., John Wiley & Sons, New York (2001).
11 P. Lopes and R. Kataky, Chiral Interactions of the Drug Propranolol and ${\alpha}_1$-Acid-glycoprotein at a Micro Liquid-liquid Interface, Anal. Chem., 84, 2299 (2012).   DOI
12 H. J. Lee, C. Beriet, and H. H. Girault, Amperometric Detection of Alkali Metal Ions on Micro-fabricated Composite Polymer Membranes, J. Electroanal. Chem., 453, 211 (1998).   DOI
13 C. J. Collins, C. Lyons, J. Strutwolf, and D. W. M. Arrigan, Serum-protein Effects on the Detection of the ${\beta}$-blocker Propranolol by Ion-transfer Voltammetry at a Micro-ITIES Array, Talanta, 80, 1993 (2010).   DOI
14 S. O'Sullivan and D. W. M. Arrigan, Electrochemical Behaviour of Myoglobin at an Array of Microscopic Liquid-liquid Interfaces, Electrochim. Acta, 77, 71 (2012).   DOI
15 E. Alvarez de Eulate, L. Serls, and D. W. M. Arrigan, Detection of Haemoglobin Using an Adsorption Approach at a Liquid-liquid Microinterface Array, Anal. Bioanal. Chem., 405, 3801 (2013).   DOI
16 Y. Tong, P. Sun, Z. Zhang, and Y. Shao, Fabrication of Agar-gel Microelectrodes and Their Application in the Study of Ion Transfer Across the Agar-water/1,2-Dichloroethane Interface, J. Electroanal. Chem., 504, 52 (2001).   DOI
17 R. Ishimatsu, A. Izadyar, B. Kabagambe, Y. Kim, J. Kim, and S. Amemiya, Electrochemical Mechanism of Ion-ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces, J. Am. Chem. Soc., 133, 16300 (2011).   DOI
18 X. Meng, Z. Liang, B. Li, X. Xu, Q. Li, W. Zhao, S. Xie, and Y. Shao, Investigation of Transfer Behavior of Protonated Pyridine at the Liquid/Liquid Interface Using Dual Micropipettes, J. Electroanal. Chem., 656, 125 (2011).   DOI
19 F. Silva, M. J. Sousa, and C. M. Pereira, Electrochemical Study of Aqueous-organic Gel Micro-interfaces, Electrochim. Acta, 42, 3095 (1997).   DOI
20 S. Wilke, H. Wang, M. Muraczewska, and H. Muller, Amperometric Detection of Heavy Metal Ions in Ion Pair Chromatography at an Array of Water/Nitrobenzene Micro Interfaces, Fresen. J. Anal. Chem., 356, 233 (1996).
21 H. Katano and M. Senda, Stripping Voltammetry of Mercury(II) and Lead(II) Ions at Liquid/Liquid Interface, Anal. Sci., 14, 63 (1998).   DOI
22 M. D. Osborne and H. H. Girault, The Micro Water/1,2-Dichloroethane Interface as a Transducer for Creatinine Assay, Mikrochim. Acta, 117, 175 (1995).   DOI
23 M. D. Osborne and H. H. Girault, The Liquid-liquid Micro-interface for the Amperometric Detection of Urea, Electroanalysis, 7, 714 (1995).   DOI
24 G. Herzog, V. Kam, and D. W. M. Arrigan, Electrochemical Behaviour of Haemoglobin at the Liquid/Liquid Interface, Electrochim. Acta, 53, 7204 (2008).   DOI
25 M. D. Scanlon, G. Herzog, and D. W. M. Arrigan, Electrochemical Detection of Oligopeptides at Silicon-fabricated Micro-Liquid/Liquid Interfaces, Anal. Chem., 80, 5743 (2008).   DOI
26 A. A. Stewart, G. Taylor, H. H. Girault, and J. McAleer, Voltammetry at MicroITIES Supported at the Tip of a Micropipette : Part I. Linear Sweep Voltammetry, J. Electroanal. Chem., 296, 491 (1990).   DOI
27 T. Ohkouchi, T. Kakutani, T. Osakai, and M. Senda, Voltammetry with an Ion-selective Microelectrode Based on Polarizable Oil/Water Interface, Anal. Sci., 7, 371 (1991).   DOI
28 A. Berduque, R. Zazpe, and D. W. M. Arrigan, Electrochemical Detection of Dopamine Using Arrays of Liquid-liquid Micro-interfaces Created within Micromachined Silicon Membranes, Anal. Chim. Acta, 611, 156 (2008).   DOI
29 G. Herzog, S. Flynn, and D. W. M. Arrigan, Macromolecular Sensing at the Liquid-liquid Interface, J. Phys.: Conf. Ser., 307, 1 (2011).
30 G. Herzog, A. Roger, D. Sheehan, and D. W. M. Arrigan, Ion-transfer Voltammetric Behavior of Protein Digests at Liquid/Liquid Interfaces, Anal. Chem., 82, 258 (2010).   DOI
31 G. Herzog, V. Kam, A. Berduque, and D. W. M. Arrigan, Detection of Food Additives by Voltammetry at the Liquid-liquid Interface, J. Agric. Food Chem., 56, 4304 (2008).   DOI
32 J. A. Ortuno, A. Gil, and C. Sanchez-Pedreno, Flow-injection Pulse Amperometric Detection Based on Ion Transfer Across a Water-plasticized Polymeric Membrane Interface for the Determination of Imipramine, Sens. Actuators, B, 122, 369 (2007).   DOI
33 J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification, Anal. Chem., 85, 1582 (2013).   DOI
34 H. J. Lee, C. Beriet, and H. H. Girault, Stripping Voltammetric Determination of Choline Based on Micro-fabricated Composite Membrane, Anal. Sci., 14, 71 (1998).   DOI
35 C. M. Pereira, J. M. Oliveira, R. M. Silva, and F. Silva, Amperometric Glucose Biosensor Based on Assisted Ion Transfer through Gel-supported Microinterfaces, Anal. Chem., 76, 5547 (2004).   DOI
36 B. Huang, B. Yu, P. Li, M. Jiang, Y. Bi, and S. Wu, Vitamin B1 Ion-selective Microelectrode Based on a Liquid-liquid Interface at the Tip of a Micropipette, Anal. Chim. Acta, 312, 329 (1995).   DOI
37 H. J. Lee, Ph. D. Dissertation, Ion Transfer Reactions Across Micro-liquid/liquid Interfaces: Fundamental Studies and Applications, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (1999).
38 D. Zhan, S. Mao, Q. Zhao, Z. Chen, H. Hu, P. Jing, M. Zhang, Z. Zhu, and Y. Shao, Electrochemical Investigation of Dopamine at the Water/1,2-Dichloroethane Interface, Anal. Chem., 76, 4128 (2004).   DOI
39 B. Liu and M. V. Mirkin, Electrochemistry at Microscopic Liquidliquid Interfaces, Electroanalysis, 12, 1433 (2000).   DOI
40 C. M. Pereira and F. Silva, Square Wave Voltammetry with Arrays of Liquid/Liquid Microinterfaces, Electroanalysis, 6, 1034 (1994).   DOI
41 A. Molina, C. Serna, J. A. Ortuno, and E. Torralba, Studies of Ion Transfer Across Liquid Membranes by Electrochemical Techniques, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108, 126 (2012).   DOI
42 C. Gavach and F. Henry, Chronopotentiometric Investigation of the Diffusion Overvoltage at the Interface between Two Non-miscible Solutions: I. Aqueous Solution-Tetrabutylammonium Ion Specific Liquid Membrane, J. Electroanal. Chem., 54, 361 (1974).   DOI
43 Z. Samec, Dynamic Electrochemistry at the Interface between Two Immiscible Electrolytes, Electrochim. Acta, 84, 21 (2012).   DOI
44 G. Herzog and V. Beni, Stripping Voltammetry at Micro-interface Arrays: A Review, Anal. Chim. Acta, 769, 10 (2013).   DOI
45 D. W. M. Arrigan, Voltammetry of Proteins at Liquid-liquid Interfaces, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 109, 167 (2013).   DOI
46 J. Koryta and V. Marecek, Electrolysis at the Interface of Two Immiscible Electrolyte Solutions: Determination of Ionophores, Mikrochim. Acta, 1, 225 (1990).
47 Z. Samec, V. Marecek, and J. Weber, Charge Transfer between Two Immiscible Electrolyte Solutions: Part II. The Investigation of $Cs^+$ Ion Transfer Across the Nitrobenzene/Water Interface by Cyclic Voltammetry with IR Drop Compensation, J. Electroanal. Chem., 100, 841 (1979).   DOI
48 J. Koryta, Electrochemical Polarization Phenomena at the Interface of Two Immiscible Electrolyte Solutions, Electrochim. Acta, 24, 293 (1979).   DOI
49 E. Bakker and E. Pretsch, Modern Potentiometry, Angew. Chem. Int. Ed., 46, 5660 (2007).   DOI
50 Z. Samec, E. Samcova, and H. H. Girault, Ion Amperometry at the Interface between Two Immiscible Electrolyte Solutions in View of Realizing the Amperometric Ion-selective Electrode, Talanta., 63, 21 (2004).   DOI
51 S. Liu, Q. Li, and Y. Shao, Electrochemistry at Micro- and Nanoscopic Liquid/Liquid Interfaces, Chem. Soc. Rev., 40, 2236 (2011).   DOI
52 P. Peljo and H. H. Girault, "Liquid/Liquid Interfaces, Electrochemistry at", Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester (2012).
53 W. Nernst and E. H. Riesenfield, Ann. Phys., 8, 600 (1902).
54 G. Taylor and H. H. Girault, Ion Transfer Reactions Across a Liquid-liquid Interface Supported on a Micropipette Tip, J. Electroanal. Chem., 208, 179 (1986).   DOI
55 R. Zazpe, C. Hibert, J. O'Brien, Y. H. Lanyon, and D. W. M. Arrigan, Ion-transfer Voltammetry at Silicon Membrane-based Arrays of Micro-liquid-liquid Interfaces, Lab Chip, 7, 1732 (2007).   DOI
56 Y. Shao, S. N. Tan, V. Devaud, and H. H. Girault, Ion Transfer Facilitated by the Neutral Carrier N,N,-Dicyclohexyl-N',N'-diisobutyl-cis-cyclohexane-l,2-dicarboxamide Across the Water/l,2-Dichloroethane Interface, J. Chem. Soc., Faraday Trans., 89, 4307 (1993).   DOI
57 C. Gavach, T. Mlodnicka, and J. Guastalla, Compt. Rend. Acad. Sci. Ser. C, 266, 1196 (1968).
58 P. D. Beattie, A. Delay, and H. H. Girault, Investigation of the Kinetics of Assisted Potassium Ion Transfer by Dibenzo-18-crown-6 at the Micro-ITIES by means of Steady-state Voltammetry, J. Electroanal. Chem., 380, 167 (1995).   DOI
59 S. Wilke and H. Wang, Transfer of Heavy Metal Ions Across the Water/Nitrobenzene Microinterface Facilitated by the Cadmium Selective Ionophore ETH1062, J. Electroanal. Chem., 475, 9 (1999).   DOI
60 Y. Kudo, Y. Takeda, and H. Matsuda, On the Facilitating Effect of Neutral Macrocyclic Ligands on Ion Transfer Across the Interface between Aqueous and Organic Solutions II: Alkali Metal Ion Complexes with Hydrophilic Crown Ethers, J. Electroanal. Chem., 396, 333 (1995).   DOI
61 T. Osakai, T. Kakutani, and M. Senda, A Novel Amperometric Ammonia Sensor, Anal. Sci., 3, 521 (1987).   DOI
62 T. Osakai, T. Kakutani, and M. Senda, A Novel Amperometric Urea Sensor, Anal. Sci., 4, 529 (1988).   DOI
63 J. A. Campbell, A. A. Stewart, and H. H. Girault, Determination of the Kinetics of Facilitated Ion Transfer Reactions Across the Micro Interface between Two Immiscible Electrolyte Solutions, J. Chem. Soc., Faraday Trans. 1, 85, 843 (1989).   DOI
64 P. O'Dwyer and V. J. Cunnane, Selective Transfer of $Ag^+$ at the Water/1,2-Dichloroethane Interface Facilitated by Complex Formation with a Calixarene Derivative, J. Electroanal. Chem., 581, 16 (2005).   DOI
65 J. Guo, Y. Yuan, and S. Amemiya, Voltammetric Detection of Heparin at Polarized Blood Plasma/1,2-Dichloroethane Interfaces, Anal. Chem., 77, 5711 (2005).   DOI
66 P. D. Beattie, A. Delay, and H. H. Girault, Investigation of the Kinetics of Ion and Assisted Ion Transfer by the Technique of ac Impedance of the Micro-ITIES, Electrochim. Acta, 40, 2961 (1995).   DOI
67 T. Kakutani, Y. Nishiwaki, T. Osakai, and M. Senda, On the Mechanism of Transfer of Sodium Ion Across the Nitrobenzene/Water Interface Facilitated by Dibenzo-18-crown-6, Bull. Chem. Soc. Jpn., 59, 781 (1986).   DOI
68 R. Cui, Q. Li, D. E. Gross, X. Meng, B. Li, M. Marquez, R. Yang, J. L. Sessler, and Y. Shao, Anion Transfer at a Micro-Water/1,2-Dichloroethane Interface Facilitated by ${\beta}$-octafluoro-meso-octamethylcalix[4]pyrrole, J. Am. Chem. Soc., 130, 14364 (2008).   DOI
69 T. J. Stockmann, Y. Lu, J. Zhang, H. H. Girault, and Z. Ding, Interfacial Complexation Reactions of $Sr^{2+}$ with Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine Oxide for Understanding its Extraction in Reprocessing Spent Nuclear Fuels, Chem. Eur. J., 17, 13206 (2011).   DOI
70 F. Bianchi, H. J. Lee, and H. H. Girault, Ionode Detection and Capillary Electrophoresis Integrated on a Polymer Micro-chip, J. Electroanal. Chem., 523, 40 (2002).   DOI
71 J. A. Ribeiro, I. M. Miranda, F. Silva, and C. M. Pereira, Electrochemical Study of Dopamine and Noradrenaline at the Water/1,6-Dichlorohexane Interface, Phys. Chem. Chem. Phys., 12, 15190 (2010).   DOI
72 J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical Sensing of Ammonium Ion at the Water/1,6-Dichlorohexane Interface, Talanta, 88, 54 (2012).   DOI
73 A. Sherburn, M. Platt, D. W. M. Arrigan, N. M. Boag, and R. A. W. Dryfe, Selective Silver Ion Transfer Voltammetry at the Polarised Liquid/Liquid Interface, Analyst, 128, 1187 (2003).   DOI
74 N. Nishi, H. Murakami, S. Imakura, and T. Kakiuchi, Facilitated Transfer of Alkali-metal Cations by Dibenzo-18-crown-6 Across the Electrochemically Polarized Interface between an Aqueous Solution and a Hydrophobic Room-temperature Ionic Liquid, Anal. Chem., 78, 5805 (2006).   DOI
75 H. Bingol, E. G. Akgemci, M. Ersoz, and T. Atalay, Electrochemical Investigation of Heavy Metal Ion Transfer Across the Water/1,2-Dichloroethane Interface Assisted by 9-Ethyl-3-carbazolecarboxaldehyde-thiosemicarbazone, Electroanalysis, 19, 1327 (2007).   DOI
76 L. Tomaszewski, Z. Ding, D. J. Fermin, H. M. Cacote, C. M. Pereira, F. Silva, and H. H. Girault, Spectroelectrochemical Study of the Copper(II) Transfer Assisted by 6,7-Dimethyl-2,3-di(2-pyridyl) quinoxaline at the Water/1,2-Dichloroethane Interface, J. Electroanal. Chem., 453, 171 (1998).   DOI
77 A. M. O'Mahony, M. D. Scanlon, A. Berduque, V. Beni, D. W. M. Arrigan, E. Faggi, and A. Bencini, Voltammetry of Chromium (VI) at the Liquid/Liquid Interface, Electrochem. Commun., 7, 976 (2005).   DOI
78 V. Marecek, M. Gratzl, A. Pungor, and J. Janata, Fluctuation Analysis of Liquid/Liquid and Gel/Liquid Interfaces, J. Electroanal. Chem., 266, 239 (1989).   DOI
79 N. Nishi, S. Imakura, and T. Kakiuchi, Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-temperature Ionic Liquid of Tetrakis[3,5-bis(trifluoromethyl) phenyl]borate, Anal. Chem., 78, 2726 (2006).   DOI
80 R. Ishimatsu, N. Nishi, and T. Kakiuchi, Interfacial Ion Pairing at the Interface between Water and a Room-temperature Ionic Liquid, N-Tetradecylisoquinolinium Bis(pentafluoroethylsulfonyl) imide, Langmuir, 23, 7608 (2007).   DOI
81 D. S. Silvester and D. W. M. Arrigan, Array of Water/Room Temperature Ionic Liquid Micro-interfaces, Electrochem. Commun., 13, 477 (2011).   DOI
82 T. J. Stockmann and Z. Ding, Facile Determination of Formal Transfer Potentials for Hydrophilic Alkali Metal Ions at Water/Ionic Liquid Microinterfaces, Phys. Chem. Chem. Phys., 14, 13949 (2012).   DOI
83 S. O'Sullivan, E. Alvarez de Eulate, Y. H. Yuen, E. Helmerhorst, and D. W. M. Arrigan, Stripping Voltammetric Detection of Insulin at Liquid-liquid Microinterfaces in the Presence of Bovine Albumin, Analyst, DOI: 10.1039/c3an01123b (2013).
84 H. J. Lee, P. D. Beattie, B. J. Seddon, M. D. Osborne, and H. H. Girault, Amperometric Ion Sensors Based on Laser-patterned Composite Polymer Membranes, J. Electroanal. Chem., 440, 73 (1997).
85 S. N. Faisal, M. M. Hossain, and H. J. Lee, An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification, J. Electrochem. Sci. Tech., 1, 121 (2010).   DOI
86 S. Sawada, H. Torii, T. Osakai, and T. Kimoto, Pulse Amperometric Detection of Lithium in Artificial Serum Using a Flow Injection System with a Liquid/Liquid-type Ion-selective Electrode, Anal. Chem., 70, 4286 (1998).   DOI
87 H. J. Lee and H. H. Girault, Amperometric Ion Detector for Ion Chromatography, Anal. Chem., 70, 4280 (1998).   DOI
88 H. J. Lee, C. M. Pereira, A. F. Silva, and H. H. Girault, Pulse Amperometric Detection of Salt Concentrations by Flow Injection Analysis Using Ionodes, Anal. Chem., 72, 5562 (2000).   DOI
89 M. M. Hossain, C. S. Kim, H. J. Cha, and H. J. Lee, Amperometric Detection of Parathion and Methyl Parathion with a Microhole-ITIES, Electroanalysis, 23, 2049 (2011).   DOI