• Title/Summary/Keyword: 계면박리

Search Result 145, Processing Time 0.033 seconds

A Study on External Effects on Peeling-off Behavior of Adhesive Tape (접착 테이프 박리거동에 미치는 외부효과에 관한 연구)

  • Han, Won Heum;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • In order to describe external effects on the behavior of the adhesive tape, the semi-rigid body cylinder chain model for adhesive tape has been proposed as follows. Firstly the behavior of the tape is in detail investigated while it's being pulled off from the plate, and subsequently a relevant phenomenological model is designed. Then all the contributors affecting the force to peel out the tape from plate (hereafter, the pull out force) are clearly defined and their sensitivity analyses are made to set up the experimental reference condition, under which the angular dependence of the pull out force is measured in every $10^{\circ}$. The experimental data turn out to be in good agreement with the theoretical ones by our model within the measurement error, and the effects due to other factors are proved to be well explained from the phenomenological viewpoint. From these results, the concept of this study might be expected to be very useful for the test and evaluation of PSA types of adhesive tape.

Evaluation of Adhesion Property of Epoxy Adhesive with Different Surface Roughness of GFRC (유리섬유강화 복합재료의 표면거칠기에 따른 에폭시 접착제의 접착강도 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Adhesion property of epoxy adhesive was evaluated with different surface roughness of glass fiber reinforced composite (GFRC) and optimized condition of surface roughness was confirmed. Different sizes of alumina (Al2O3) particles were blasted to GFRC to control surface roughness of GFRC using sand blasting method. The surface roughness was measured and quantified via surface roughness tester. Contact angle was measured using four types of different solvents. Surface energies and work of adhesion between epoxy adhesive and GFRCs were calculated with different surface roughness of GFRC. Adhesion property between epoxy adhesive and GFRCs was evaluated using single lap shear test and adhesion property increased with surface roughness of GFRC. The fracture surface of GFRCs was observed to evaluate adhesion property. Finally, the optimized roughness condition of GFRCs was confirmed.

Effects of Tri-functional Monomers on the Properties of UV-curable Pressure Sensitive Adhesives (PSAs) (삼관능 모노머의 종류 및 함량에 따른 자외선 경화형 감압 점착 필름의 특성)

  • Won, Jong-Woo;Kim, Ju-Yeol;Jang, Ki-Deog;Park, Myung-Chul;Chun, Jae Hwan;Kwon, Oh Hyeong;Hwang, Jin-Sang
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, polybutadiene based di-functional urethane acrylate oligomer (PB-UAO) were synthesized from polybutadiene diol and isophorone diisocyanate. And then, pressure sensitive adhesive films were prepared by mixing with synthesized oligomer, tri-functional acrylate monomer (Tris(2-acryloyloxyethyl) isocyanurate (TAOEIC) or Trimethylolpropane triacrylate (TMPTA) or Pentaerythritol triacrylate (PETA)), mono-functional acrylate monomer (Stearyl acrylate) and UV initiators. Effects of types and contents of trifunctional acrylate monomers on peel strength, tensile strength, elongation, thermal stability and water absorption property were studied. As the contents of tri-functional acrylate monomer increased, and as the molecular weight of tri-functional acrylate monomer decreased, peel strength, elongation and water absorption showed a tendency to decrease whereas tensile strength and thermal stability showed a tendency to increase.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Effects of Wet Chemical Treatment and Thermal Cycle Conditions on the Interfacial Adhesion Energy of Cu/SiNx thin Film Interfaces (습식표면처리 및 열 사이클에 따른 Cu/SiNx 계면접착에너지 평가 및 분석)

  • Jeong, Minsu;Kim, Jeong-Kyu;Kang, Hee-Oh;Hwang, Wook-Jung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Effects of wet chemical treatment and thermal cycle conditions on the quantitative interfacial adhesion energy of $Cu/SiN_x$ thin film interfaces were evaluated by 4-point bending test method. The test samples were cleaned by chemical treatment after Cu chemical-mechanical polishing (CMP). The thermal cycle test between Cu and $SiN_x$ capping layer was experimented at the temperature, -45 to $175^{\circ}C$ for 250 cycles. The measured interfacial adhesion energy increased from 10.57 to $14.87J/m^2$ after surface chemical treatment. After 250 thermal cycles, the interfacial adhesion energy decreased to $5.64J/m^2$ and $7.34J/m^2$ for without chemical treatment and with chemical treatment, respectively. The delaminated interfaces were confirmed as $Cu/SiN_x$ interface by using the scanning electron microscope and energy dispersive spectroscopy. From X-ray photoelectron spectroscopy analysis results, the relative Cu oxide amounts between $SiN_x$ and Cu decreased by chemical treatment and increased after thermal cycle. The thermal stress due to the mismatch of thermal expansion coefficient during thermal cycle seemed to weaken the $Cu/SiN_x$ interface adhesion, which led to increased CuO amounts at Cu film surface.

A Study on the Degradation of Polymer-Coated Stesl in 0.5M NaCl Solution (0.5M NaCl 용액내에서 일어나는 고분자재료로 피복된 강의 퇴화에 관한 연구)

  • Byeon, Su-Il;Jeong, In-Jo;Mun, Seong-Mo;An, Sang-Ho
    • Korean Journal of Materials Research
    • /
    • v.6 no.10
    • /
    • pp.1025-1033
    • /
    • 1996
  • 본 연구에서는 0.5M NaCI 용액내에서 일어나는 고분자재료로 피복된 강의 퇴화현상을 광학현미경 관찰 및 A.C. impedance spectroscopy를 이용하여 연구하였다. 강의 부식은 고분자재료로 피복된 강의 경우 국부부식(localized corrosion)의 형태로 나타난 반면, 피복되지 않은 강의 경우에는 전면부식(uniform corrosion)의 형태로 진행되었다. 고분자재료로 피복된 강의 부식이 국부적으로 진행되는 것은 피복층내에 존재하는 기공이나 크랙과 같은 결함 등에서 부식이 선택적으로 일어나기 때문으로 사료된다. 피복층의 박리(delamination) 현상은 고분자재료로 피복된 강/구리 갈바닉쌍(galvanic couple)의 경우 구리표면 위의 피복층에서만 관찰되었다. 이는 캐소드(cathode)로 작용하는 구리의표면에서 산소의 환원반응에 의해서 형성된 수산화이온(OH-)이 피복층의 박리를 조장하고 있음을 보여준다. 또한, 고분자재료 피복층의 파손 현상은 고분자재료/강의계면에서 석출된 부식생성물에 의해서 크게 조장되고 있음을 알 수 있다.

  • PDF

진공중 Electron Beam & Laser에 의하여 열처리된 세라믹 코팅층의 결정학적 변화

  • Park, Sun-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.208.1-208.1
    • /
    • 2014
  • 반도체 공정이나 디스플레이 공정에는 세라믹 부품이나 금속 부품이 많이 포함되어 있는데 이들 부품이 공정중에 발생하는 플라즈마 또는 여러가지 부산물에 의하여 부품의 표면에 다양한 코팅층이 형성된다. 그리고 이러한 공정에 들어가는 부품은 플라즈마 또는 각종 산에 취약한 특성을 나타내는데 이에 대하여 해결하기 위하여 세라믹 부품의 표면에 용사코팅이나 각종 물리, 화학적 방법을 이용하여 표면에 코팅층을 형성한다. 이렇게 형성된 코팅층중 특히 용사코팅에 의하여 형성된 코팅층은 플라즈마 공정이나 각종 부식성 산에 의하여 박리 또는 크랙이 발생하게 된다. 이러한 특성은 용사코팅층의 특성상 발생하고 있는 물리적 흡착에 의하여 흡착된 계면에서 박리가 발생할 가능성이 크게 된다. 이러한 현상을 줄이기 위하여 고열원을 통하여 열처리 실험을 실시한다. 특히 전자빔이나 레이저 열원은 고온 급속 가열에 의하여 고융점인 세라믹 용사코팅층 및 금속 코팅층을 재용융 및 응고과정을 통하여 미세구조를 변화시킨다. 특히 전자빔 열처리는 진공중에서 코팅층의 열처리를 행함으로써 코팅층 내에 있는 기공을 제거하거나 불순물을 제거하기에 용이하다. 본 연구에서 수행된 열처리는 기 코팅된 세라믹이나 금속재의 표면을 다량의 Electron의 Flux를 통하여 표면의 온도를 Melting point 직하 온도까지 상승하였다가 응고시킴으로써 코팅층의 특성을 변화시켰다. 이렇게 열처리된 시험편의 XRD를 통해 결정구조를 파악하고, SEM, OM을 통하여 기공의 제거, 결함의 제거 등을 확인하였으며 경도 변화를 통하여 물리적 특성의 변화를 함께 확인하였다. 평가 결과 결정구조의 변화와 더불어 경도등의 상승효과가 발생하였으며 코팅층 내에 존재하는 결함이 감소함을 확인하였다.

  • PDF

Effect of Post-Annealing Condition on the Peel Strength of Screen-printed Ag Film and Polyimide Substrate (후속 열처리조건이 스크린 프린팅 Ag 박막과 폴리이미드 사이의 필강도에 미치는 영향)

  • Bae, Byung-Hyun;Lee, Hyeonchul;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • Effect of post-annealing treatment times at $200^{\circ}C$ on the peel strength of screen-printed Ag film/polyimide substrate were systematically investigated by $180^{\circ}$ peel test for thermal reliability assessment of printed interconnect. Initial peel strength around 16.7 gf/mm increased up to 29.4 gf/mm after annealing for 24hours, and then sharply decreased to 22.3, 3.6, 0.6, and 0.1 gf/mm after 48, 100, 250, and 500 hours, respectively. Ag-O-C chemical bonding as well as binder organic bridges formations seemed to be responsible for interfacial adhesion improvement after the initial annealing treatment, while excessive Cu oxide formation at Cu/Ag interface seems to be closely related to sharp decrease in peel strength for longer annealing times.

Interfacial Adhesion between Screen-Printed Ag and Epoxy Resin-Coated Polyimide (에폭시수지가 도포된 폴리이미드와 스크린 프린팅 Ag 사이의 계면접착력 평가)

  • Park, Sung-Cheol;Kim, Jae-Won;Kim, Ki-Hyun;Park, Se-Ho;Lee, Young-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The interfacial adhesion strengths between screen-printed Ag film and epoxy resin-coated polyimide were evaluated by $180^{\circ}$ peel test method. Measured peel strength value was initially around $164.0{\pm}24.4J/m^2$, while the heat treatment during 24h at $120^{\circ}C$ increase peel strength up to $220.8{\pm}19.2J/m^2$. $85^{\circ}C/85%$ RH temperature/humidity treatment decrease peel strength to $84.1{\pm}50.8J/m^2$, which seems to be attributed to hydrolysis bonding reaction mechanism between metal and adhesive epoxy resin coating layer.