레벨셋방법과 헤비사이드 강화를 이용한 아이소-지오메트릭 위상최적설계 방법을 개발하였다. 레벨셋 방법에서는 초기해석영역은 고정되어 있으며 경계는 레벨셋 함수값을 이용한 암시적인 동적 경계로 표현되며, 이는 복잡한 위상적 변화를 용이하게 표현할 수 있게 한다. 헤비사이드 강화는 기존의 기저함수에 내부 경계를 표현하는 강화 함수를 더함으로써 아이소-지오메트릭 해석법의 정밀도를 향상시킨다. 제안된 위상 최적설계 방법은 다음과 같은 이점을 갖는다. 아이소-지오메트릭 해석법을 이용하여 정밀한 기하 형상을 얻을 수 있으며 텐서 곱을 이용하여 정의된 패치의 한계를 헤비사이드 강화를 이용함으로써 해결할 수 있다. 단일 패치를 사용함으로써 연속적인 응력 분포를 얻어낼 수 있을 뿐 아니라 불연속적인 변위장 또한 표현해 낼 수 있다. 레벨셋 방법론이 암시적 동적 경계를 잘 표현하기 때문에 이를 이용하여 헤비사이드 강화를 이용한 아이소-지오메트릭 해석법에서 위상의 변화를 잘 표현해 낼 수 있다.
본 논문은 입술의 경계선을 효과적으로 추출하는 방법을 제안하였다. 입술 형태는 PDM(Point Distribution Model)과 주성분 분석법을 이용하여 표현하고 입술 경계선은 GLDM(Gray Level Distribution Model)을 기반으로 표현하였다 입술 경계선 추출은 모델에 대한 입력영상의 정확도에 대한 목적함수를 최적화하는 문제로 단순화하였으며, 최적화를 위해 다운힐 심플렉스(Down Hill Simplex) 알고리즘을 이용하였다. 탐색과정에서 지역 최소점으로 수렴하는 문제를 해결하기 위하여 입술 형태 모델의 형태계수를 GMM(Gaussian Mixture Model)을 이용하여 표현하였다. 형태계수에 대한 GMM을 이용하여 입술의 대략적인 형태를 찾고, 이때 사용된 mixture 성분을 이용하여 탐색과정에서 입술의 형태를 조정함으로써 지역 최소점에 수렴하여 입술의 정확한 위치를 찾지 못하는 문제점을 해결하였다. 여러 영상을 대상으로 실험하여 좋은 결과를 얻었다.
본 연구는 B-spline 근사법과 유전자 알고리즘을 이용하여 기하학적 경계 조건-양끝점의 위치 벡터 및 접선 벡터-을 만족하는 혼합 곡선 근사법에 의한 선형 표현을 내용으로 한다. B-spline 근사법을 이용하여 선형을 표현하고, 이들 곡선을 제어하는 조정점들이 기하학적 경계조건을 만족하도록 유전자 알고리즘으로 조정한다. 이 방법은 선형 생성시 순정 작업을 동시에 수행하므로 효율적인 선형 설계를 가능하게 한다.
사물의 거동, 현상에 대한 해석을 실시함에 있어 해석적 해법에 대비한 수치적 해법의 장점은 재질의 성질이 불균질하고 이방성이며 구조물의 형태가 기하학적으로 복잡할 뿐만 아니라 경계조건이 복잡하여 수학적인 표현이 어려울 때 그 해석을 가능케 해 주는 것이라고 볼 수 있다. 이러한 수치 해석법의 대표적인 것으로 유한요소법과 경계 요소법을 들 수 있다.(중략)
본 논문에서는 전자기 과도현상 해석을 위한 다단자 회로망 등가표현법을 제안한다. 이 방법은 M개의 경계모선을 가진 축약대상 계통의 과도특성을 시간 영역에서 분석하며 이를 이용해 M 개의 노톤형 이산시간 등가 어드미턴스 필터꼴의 등가시스템을 구현한다. 이 때 각각의 등가 어드미턴스 필터 모델들은 해당 경계모선에서의 구동점 어드미턴스 특성을 나타내는 부분과 나머지 M-1 개의 등가 종속전류원으로 구성된다. 또한 이 등가 종속전류원들은 각 경계모선을 연결하는 분포정수 회로요소들로 인한 시지연 효과를 명확하게 반영할 수 있는 구조를 갖는다. 완성된 M 단자쌍 모델을 해석대상 시스템에 대한 이산시간 표현형과 쉽게 결합하여 원하는 전자기 과도현상 모의해석을 수행할 수 있다. 축약대상 시스템과 2 개의 경계모선을 통해 연결된 시험계통을 대상으로 모선지락 사고시 과전압과 스위칭 써지를 모의해석한 결과 제안하는 방법이 타당함을 확인할 수 있었다.
본 논문에서는 등기하 해석법을 이용하여 설계 의존형 하중조건을 갖는 구조물에 대한 형상 최적설계 를 수행하였다. 유한요소 기반 형상 최적설계는 설계영역 매개화에 어려움이 있으나 등기하 해석법은 NURBS 기저 함수와 조정점을 이용함으로써 기하학적 표현이 용이하다는 장점을 가지고 있다. 기하학적으로 정확한 모델은 응답 및 설계민감도 해석에 사용되며, 설계구배 기반의 최적화에 있어서 중요한 역할을 한다. 하중조건이 설계영역의 변화에 따라 변하는 최적설계 문제에서 경계에서 설계민감도가 부정확한 경우, 설계공간에서 최적설계가 균일한 수렴성을 갖기 어렵다. 즉 유한요소법을 이용한 형상 최적설계에서 설계 의존형 하중조건을 갖는 문제를 푸는 경우, 최적설계를 진행할 때 변하는 경계의 부정확성 때문에 정확한 설계민감도를 얻기가 어려운 점이 있다. 본 논문에서는, 엄밀한 기하형상을 표현하는 등기하 설계민감도를 활용한 형상 최적설계 기법이 설계 의존형 하중조건을 갖는 문제에서 좋은 결과를 제시함을 확인하였다.
본 연구는 곡선좌표계에서 유한차분기법(finite difference method)을 이용하여 2차원 흐름이 모의가능한 수치모형을 개발하는 것이다. 기존의 연구는 대부분 직교좌표계(cartesian coordinate system)에서의 격자망을 대상으로 개발되고 적용되었기 때문에 불규칙한 흐름의 경계 및 형상을 올바로 표현하기 어려웠다. 유한요소법이나 유한체적법같은 수치모의기법들이 개발되어 비구조격자체계를 구성하고 자연현상에 가까운 경계 표현할 수 있도록 개발되었다. 하지만 위의 기법들은 질량과 운동량과 같은 물리량을 보존하기 위해서 매우 조밀한 격자체계를 가져야만 한다. 이에 본 연구에서는 기존의 문제점들을 해결하기 위하여 곡선좌표계(curvilinear coordinate system)를 이용하여 지배방정식을 표현하고 2차원 흐름을 모의할 수 있는 모형을 구축한다. 수치모형은 leap-frog기법과 1차 정확도의 풍상차분기법(upwind scheme)을 사용하여 구성하였다. 본 연구에서 개발된 모형을 사각수조 및 만곡수로흐름에 적용하여 모의결과를 해석해 및 실험관측값과 비교하였다. 이로부터 본 수치모형이 해석해 및 실측치와 잘 일치하고 있음을 알 수 있었다.
본 논문에서는 경계표현 모델에 특징형상기반 단순화를 적용하는 방법을 제안한다. 특징형상기반 단순화를 위해, 경계표현 모델로부터 볼륨분해 트리가 생성된다. 볼륨분해 트리는 가산적 볼륨, 감산적 볼륨 및 필렛/라운드/모따기 볼륨들의 정규화된 불리언 연산으로 표현되며, 필렛/라운드/모따기 분해, 랩어라운드 분해, 볼륨분할 분해 및 셀 기반 분해로 구성된 단계적 볼륨분해를 이용해 생성된다. 볼륨분해 트리는 중위연산 형태로 변환되고, 볼륨들의 순서를 변경하여 CAD 모델을 단순화시킨다. 제안한 방법의 검증을 위해, 프로토타입 시스템을 구현했고, 테스트 케이스에 대한 CAD 모델 단순화 실험을 수행하였다. 실험을 통해 제안한 방법이 경계표현 기반 CAD 모델의 단순화에 유용함을 확인하였다.
복소 평면상의 임의의 점을 c값으로 고려한 2차 복소함수,$f(Z)=z^2+c$의 동력한 시스템은 초기 값0을 대입함으로써 획득된 순열의 발산성에 따라 C값을 분류한 만델브로트 집합을 제공한다[2]. 각 화소의 발산성을 나타내는 전형적인 만델브로트 집합 영상의 생성 에 소요되는 단축하기 위해 영역분할법(divide-and-conquer)과 삼각형을 이용한 경계 선 추적법( riangular boundary tracing)들이 제안되었다[4,6]그러나, 영역분할법은 만델브로트 집합의 생성에 영향을 주지 못하는 화소에 대한 순열의 발산여부를 조사하고 , 삼각형을 이용한 경계선 추적법은 8-연결성으로 연열된 일부 영상을 표현하지 못 하는 단점이 있다. 본 논문에서는 삼각형 추적 기법의 문제점을 해결한 화소의 8-연결성을 이용한 경계선 추적 알고리즘을 제안한다. 제안된 경계선 추적 기법은 8-연결성에 기초한 경계선 추적으로 만델브로트 영상을 생성할 때 영향을 주지 못하는 화소에 대한 발산 검사를 하지 않을 뿐만 아니라, hairly 구조와 같이 8-연결성을 갖는 만델 브로트 집합의 정확한 표현을 얻을 수 있다.
본 논문에서는 수치 영역의 포물선 지배 방정식의 근사 차수와 수치 영역 경계의 비국소적 경계 조건의 근사 차수가 서로 다를 때 음파 해에 미치는 영향을 해석적으로 보였다. 우선 평면파 분석법을 이용해 비국소적 경계 조건을 반 무한 매질 영역으로 변환했다. 그리고 실제 수치 영역과 반 무한 매질 영역의 경계에서 해석적 반사 오차를 유도했다. 지배 방정식과 비국소적 경계 조건의 해석적 오차가 간단한 대수 식으로 표현 가능한 경우에 대해서는 대수적인 오차식을 유도하고 그 경향을 고찰했다. 지배 방정식이 일반적인 고차 포물선 방정식일 때는 대수적인 오차 식은 보다 복잡하게 표현되며 수치적 방법을 이용해 그 특성을 고찰했다. 최종적으로 지배 방정식의 차수에 따른 비국소적 경계 조건의 정밀도를 유도하고 해석적 반사 오차의 전반적인 특성에 대해 논의했다. 본 연구의 핵심 공헌은 포물선 방정식과 비국소적 경계 조건의 근사 차수가 다를 때 해석적 오차 추정 방법과 사용한계를 제시했다는데 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.