• Title/Summary/Keyword: 결합모델

Search Result 2,875, Processing Time 0.05 seconds

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.

A CMOS Cell Driver Model to Capture the Effects of Coupling Capacitances (결합 커패시턴스의 영향을 고려한 CMOS 셀 구동 모델)

  • Cho, Kyeong-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.41-48
    • /
    • 2005
  • The crosstalk effects that can be observed in the very dee submicron semiconductor chips are due to the coupling capacitances between interconnect lines. The accuracy of the full-chip timing analysis is determined by the accuracy of the estimated propagation delays of cells and interconnects within the chip. This paper presents a CMOS cell driver model and delay calculation algerian capturing the crosstalk effects due to the coupling capacitances. The proposed model and algorithm were implemented in a delay calculation program and used to estimate the propagation delays of the benchmark circuits extracted from a chip layout. We observed that the average discrepancy from HSPICE simulation results is within $1\%$ for the circuits with a victim affected by $0\~10$ aggressors.

Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model (입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In this study, Class II behavior of rock failure process under uniaxial and biaxial compression has been numerically simulated using bonded particle model. Class II behavior of rock was simulated by radial strain controlled uniaxial and biaxial compression tests using a suggested method of ISRM. Micro-parameters used in the simulation were determined based on the laboratory uniaxial compression tests carried out at ${\"{A}}sp{\"{o}}$ Hard Rock Laboratory, Sweden. Class II behavior of ${\"{A}}sp{\"{o}}$ rock was effectively simulated using newly proposed numerical technique in this study, and the results of numerical simulations show good similarity with the complete stress-strain curves for Class II behavior obtained from the laboratory tests.

A Union Model of Human and Agent for Processing the Information of the Complex System (복잡계 정보 처리를 위한 사람과 에이전트의 결합 모델)

  • 고성범;김동근
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.752-763
    • /
    • 2003
  • In the large scale B2B transaction like buying ´Express-Train´ or selling ´Daewoo Motor`, a tremendous amount of variables and factors of chaos functionate in it directly or indirectly. To get the effective information processing on the so called complex system like this, it should be possible to unite the human´s ability on the implicit information processing and the agent´s ability on the explicit information processing. In this paper, we suggested a union model for uniting these two heterogeneous abilities and showed how the suggested model can be used for processing the information of such a complex system as B2B negotiation.

A Study on the Recognition of Korean 4 Connected Digits Considering Co-articulation (조음결합을 고려한 4연 숫자음 인식에 관한 연구)

  • 이종진;이광석;허강인;김명기;고시영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 1992
  • Co-articulation is one of major factors that make connected word recognition difficult. This Study Considers the fact that the head Part Of the following word is changed by the Preceding word in a connection point, by applying the co-articulation model, and adj usting the following word .We choose a critical damping second order linear system for the co-articulation model, combining a one-stage DP matching recognition algorithm with this model, and Investigating the effects. The recognition experiment is carried out for 35 Korean 4 connected digits spoken by 5 male speakers, and recognition rate Is upgraded by 4.7 percent.

  • PDF

A study on data association based on multiple model for improving target tracking performance in maneuvering interval in bistatic sonar environments (양상태 소나를 운용하는 자함이 기동하는 구간에서 추적성능향상을 위한 다수모델기반의 자료결합기법 연구)

  • Park, Seung-Hyo;Song, Taek-Lyul;Lee, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • For the target tracking in cluttered environment using a bistatic sonar whose transmitter and receiver are separately positioned, it is necessary to use data association algorithm via applying a proper measurement modelling to the bistatic sonar. The measurements obtained from the interval of ownship's maneuver have an increased error due to uncertainty of the position of transmitter and receiver. Using the measurements from this interval results in poor target tracking performance. In this paper, an improved tracking performance for the proposed data association based multiple model algorithm is validated by a monte carlo simulation.

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

Vocal and nonvocal separation using combination of kernel model and long-short term memory networks (커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.261-266
    • /
    • 2017
  • In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.

An Optimization Model Based on Combining Possibility of Boundaries for Districting Problems (경계 결합 가능성 기반 구역설정 최적화 모델)

  • Kim, Kamyoung
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.423-437
    • /
    • 2014
  • Districting is a spatial decision making process to make a new regional framework for affecting human activities. Natural barriers such as rivers and mountains located within a reorganized district may reduce the efficiency of reorganized human activities. This implies that it is necessary to consider boundary characteristics in a districting process. The purpose of this research is to develop a new spatial optimization model based on boundary characteristics for districting problems. The boundary characteristics are evaluated as continuous value expressing the possibility of combining adjacent two basic spatial units rather than a dichotomous value with 1 or 0 and are defined as an objective function in the model. In addition, the model has explicitly formulated contiguity constraints as well as constraints enforcing demand balance among districts such as population and area. The boundary attributes are categorized into physical and relational characteristics. Suitability analysis is used to combine various variables related to each boundary characteristic and to evaluate the coupling possibility between two neighboring basic units. The model is applied to an administrative redistricting problem. The analytical results demonstrate that various boundary characteristics could be modeled in terms of mixed integer programming (MIP).

  • PDF