DOI QR코드

DOI QR Code

A study on data association based on multiple model for improving target tracking performance in maneuvering interval in bistatic sonar environments

양상태 소나를 운용하는 자함이 기동하는 구간에서 추적성능향상을 위한 다수모델기반의 자료결합기법 연구

  • 박승효 (한양대학교 전자시스템공학과) ;
  • 송택렬 (한양대학교 전자시스템공학과) ;
  • 이승호 (국방과학연구소)
  • Received : 2017.03.10
  • Accepted : 2017.05.30
  • Published : 2017.05.31

Abstract

For the target tracking in cluttered environment using a bistatic sonar whose transmitter and receiver are separately positioned, it is necessary to use data association algorithm via applying a proper measurement modelling to the bistatic sonar. The measurements obtained from the interval of ownship's maneuver have an increased error due to uncertainty of the position of transmitter and receiver. Using the measurements from this interval results in poor target tracking performance. In this paper, an improved tracking performance for the proposed data association based multiple model algorithm is validated by a monte carlo simulation.

송신기와 수신기가 분리되어 있는 양상태 소나를 자함에 설치하여 운용하고 다수의 클러터가 존재하는 환경에서 표적추적을 수행하기 위해서는 양상태 소나에 알맞은 측정치 모델링이 적용된 자료결합 알고리듬이 요구된다. 자함이 기동하는 구간에서는 송신기와 수신기의 위치가 많이 흔들림에 따라 측정치에 오차가 많이 커지게 되어, 이 구간에서 얻은 측정치정보를 이용하면 추적성능저하가 생기게 된다. 본 논문에서는 공정잡음이 다른 다수모델기반의 자료결합 알고리듬인 IMM-IPDA(Interacting Multiple Model-Integrated Probabilistic Data Association)를 사용하였고, 몬테칼로 시뮬레이션을 통해 추적성능향상을 확인하였다.

Keywords

References

  1. S. Coraluppi, "Multistatic sonar localization," 8th IEEE Journal of Oceanic Engineering, 31, 964-974 (2006). https://doi.org/10.1109/JOE.2005.862117
  2. Y. Bar-Shalom and E. Tse, "Tracking in a cluttered environment with probabilistic data association," Automatica, 11, 451-460 (1975). https://doi.org/10.1016/0005-1098(75)90021-7
  3. T. Kirubarajan and Y. Bar-Shalom, "Probabilistic data association techniques for target tracking in clutter," Proceedings of The IEEE. 92, 536-557 (2004).
  4. D. Musicki, R. Evans, and S. Stankovic, "Integrated probabilistic data association (IPDA)," Proceeding of the 31st Conference on Decision and Control, Tucson, Artzone, 3796-3798 (1992).
  5. D. Musicki, R. Evans, and S. Stankovic, "Integrated probabilistic data association," IEEE Transactions on Automatic Control, 39, 1237-1241 (1994). https://doi.org/10.1109/9.293185
  6. H. Blom and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with markovian switching coefficients," IEEE Trans. Automatic Control, 33, 780-783 (1988). https://doi.org/10.1109/9.1299
  7. X. R. Li and Y. Bar-Shalom, "Design of interacting multiple model for air traffic control tracking," IEEE Trans. Control System Technology, 1, 186-194 (1993). https://doi.org/10.1109/87.251886
  8. X. R. Li and Y. Bar-Shalom, "Performance prediction of the interaction multiple model algorithm," IEEE Trans. on Aerospace and Electronic Systems, 29, 755-771 (1993). https://doi.org/10.1109/7.220926
  9. D. Musicki and S. Suvorova, "Tracking in clutter using IMM-IPDA-based algorithms," IEEE Trans. on Aerospace and Electronic Systems, 44, 111-126 (2008). https://doi.org/10.1109/TAES.2008.4516993
  10. Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association (Academic Press, New York, 1988) pp. 151.