Browse > Article
http://dx.doi.org/10.7474/TUS.2011.21.3.216

Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model  

Lee, Chang-Soo (서울대학교 에너지시스템공학부)
Kwon, Sang-Ki (한국원자력연구원)
Jeon, Seok-Won (서울대학교 에너지시스템공학부)
Publication Information
Tunnel and Underground Space / v.21, no.3, 2011 , pp. 216-224 More about this Journal
Abstract
In this study, Class II behavior of rock failure process under uniaxial and biaxial compression has been numerically simulated using bonded particle model. Class II behavior of rock was simulated by radial strain controlled uniaxial and biaxial compression tests using a suggested method of ISRM. Micro-parameters used in the simulation were determined based on the laboratory uniaxial compression tests carried out at ${\"{A}}sp{\"{o}}$ Hard Rock Laboratory, Sweden. Class II behavior of ${\"{A}}sp{\"{o}}$ rock was effectively simulated using newly proposed numerical technique in this study, and the results of numerical simulations show good similarity with the complete stress-strain curves for Class II behavior obtained from the laboratory tests.
Keywords
radial strain control; bonded particle model; clumped model; ${\"{A}}sp{\"{o}}$rock; parallel bond model; complete stress-strain curve;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brown, E.T., 1981, Rock characterization, testing and monitoring: ISRM suggested method. Oxford; Pergamon.
2 Cook, N.G.W., 1965, The failure of rock, Int. J. Rock Mech. Min. Sci. 2.4, 389-403.   DOI
3 Fairhurst, C.E. and J.A. Hudson, 1999, Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression, Int. J. Rock Mech. Min. Sci. 36.3, 279-289.   DOI
4 He, C., S. Okubo and Y. Nishimatsu, 1990, A study on the Class II behavior of rock, Rock Mech. Min. Sci. 23.4, 261-273.
5 Hudson, J.A., E.T. Brown and C. Fairhurst, 1971, Optimizing the control of rock failure in servocontrolled laboratory test. Rock Mech. 3.4, 217-224.   DOI   ScienceOn
6 Hudson, J.A., S.L. Crouch and C. Fairhurst, 1972, Soft, stiff and servo-controlled testing machines: a review with reference to rock failure, Eng. Geol. 6.3, 155-189.   DOI   ScienceOn
7 Krajcinovic, D. and M. Silva, 1982, Statistical aspects of the continuous damage theory, Int. J. Solid. Struct. 18.7, 551-562.   DOI   ScienceOn
8 윤정석, 2007, 입자결합 모델링에 의한 암석의 유도전단 파괴에서의 수리-역학적 상호작용, 서울대학교 박사학위 논문.
9 이승우, 2006, 무결암 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구, 서울대학교 석사학위논문.
10 이창수, 전석원, 권상기, 2010, Clumped particle model을 이용한 암석의 역학적 거동 특성 평가, 한국지구시스템공학회 추계학술발표회 논문집, 269-271.
11 이희광, 2011,단축압축하중 하에서 평행하지 않은 균열의 전파와 결합에 관한 실험적 및 수치해석적 연구, 서울대학교 박사학위논문.
12 장보안, 지 훈, 장현식, 2010, 황등화강암을 이용한 암석의 손상기준 결정방법 연구, 지질공학, 제 20권 1호, 89-100.
13 Pan, P.Z., X.T. Feng and J.A. Hudson, 2006, Numerical simulation of Class I and Class II uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method, Int. J. Rock Mech. Min. Sci. 43.7, 1109-1117.   DOI   ScienceOn
14 Wawersik, W.R. and C. Fairhurst, 1970, A study of brittle rock fracture in laboratory compression experiments, Int. J. Rock Mech. Min. Sci. Vol. 7.5, 561-575.   DOI
15 Wawersik, W.R. and W.F. Brace, 1971, Post-failure behavior of a granite and diabase. Rock Mech. 3.2, 61-85.   DOI   ScienceOn
16 Yoon, J.S., S. Jeon, A. Zang and O. Stephansson, 2011, Bonded particle model simulation of laboratory rock tests for granite using particle clumping and contact unbonding, 2nd International FLAC/DEM Symposium, Melbourne, Austrailia, 467-474.
17 Labuz, J.F. and L. Biolzi, 1991, Class I vs. Class II stability: a demonstration of size effect, Int. J. Rock Mech. Min. Sci. 28.2-3, 199-205.   DOI   ScienceOn
18 Martin, C.D. and N.D. Chandler, 1994, The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 31, 643-659.   DOI   ScienceOn
19 Okubo, S. and Y. Nishimatsu, 1985, Uniaxial compression testing using a linear combination of stress and strain as the control variable, Int. J. Rock Mech. Min. Sci. 22.5, 323-330.   DOI   ScienceOn
20 Okubo, S., Y. Nishimatsu and C. He, 1990, Loading rate dependence of class II rock behaviour in uniaxial and triaxial compression tests - an application of a proposed new control method, Int. J. Rock Mech. Min. Sci. 27.6, 559-562.   DOI   ScienceOn
21 Potyondy, D.O. and P.A. Cundall, 2004, A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci. 41.8, 1329-1364.   DOI   ScienceOn
22 Sano, O., M. Terada and S. Ehara, 1982, A study of the time-dependent microfracturing of Oshima granite, Tectonophysics 84.2-4, 343-362.   DOI
23 Shimizu, H., T. Koyama, T. Ishida, M. Chijimatsu, T. Fujita and S. Nakama, 2010, Distinct element analysis for Class II behavior of rocks under uniaxial compression, Int. J. Rock Mech. Min. Sci. 47.2, 323-333.   DOI   ScienceOn
24 Staub, I., J.C. Anderson and B. Magnor, 2004, Aspopillar stability experiment, geology and mechanical properties of the rock mass in TASQ, SKB report R-04-01, Stockholm; 81-84.
25 Terada, M., T. Yanagidani and S. Ehara, 1984, AE rate controlled compression test of rocks. Proceedings of the third conference on accoustic emission microseismic activity in geologic structures and materials, Clausthal: Trans-Tech; 159-171.
26 Wawersik, W.R., 1968, Detailed analysis of rock failure in laboratory compression tests, Ph.D. thesis, University of Minnesota, Minneapolis.
27 Backstrom, A., J. Antikainen, T. Backer, X.T. Feng, L. Jing, A. Kobayasi, T. Koyama, P. Pan, M. Rinne, B. Shen and J.A. Hudson, 2008, Numerical modelling of uniaxial compressive failure of granite with and without saline porewater, Int. J. Rock Mech. Min. Sci. 45.7, 1109-1117.