• Title/Summary/Keyword: 건물일체형 태양광시스템

Search Result 58, Processing Time 0.032 seconds

Analysis of Performance of Balcony Integrated PV System (발코니 일체형 태양광발전시스템의 발전성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;So, Jung-Hoon;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

Case Study on 12kW Building Integrated Photovoltaic System (12kW급 건물일체형 태양광발전시스템 사례분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;So, Jung-Hoon;Yu, Gwon-Jong;Kim, Jun-Tae;Lee, Kil-Song
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

BIPV System Design to Enhance Electric Power Generation by Building up a Demonstration Mock-up and Analyzing Statistical Data (실증 목업의 구축 및 데이터의 통계적 분석을 통한 건물일체형 태양광 발전시스템의 전력발전 향상 설계)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.587-599
    • /
    • 2018
  • In building-integrated photovoltaic (BIPV) systems, power generation functions are integrated into building functions by installing solar modules in combination with building materials. While this integration appears to be attractive, a design method is needed to achieve maximum power generation. Previously, the influence of the design elements on power generation was analyzed by computer simulations and demonstration tools. On the other hand, problems remain due to the inaccuracy of power generation analysis and relationship analysis, and limited demonstration. To solve this problem, this paper proposed the use of an extended demonstration mock-up. The mock-up was designed and constructed by implementing the design elements of the module types, installation angles, and direction. The actual operation data for one year were analyzed to evaluate the effects of the design elements on power generation. These results can be used to determine the feasibility of future BIPV systems and the optimal selection of system design elements.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

A Study on generation characteristics of building integrated Photovoltaic system (건물일체형 태양광발전 시스템의 발전성능 분석)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

A Study on The development status and future of Photovoltaic Urban Project (태양광발전 도시 프로젝트의 개발현황과 발전방향 고찰)

  • Kim, Hyun-Il;Suh, Seung-Jik;Park, Kyung-Eun;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.87-92
    • /
    • 2008
  • Buildings are responsible for approximately 50% of current carbon dioxide emissions. Energy planning at a town and city scale needs a strategic approach, supported by strong planning policies. The purpose of this study was to investigate the urban scale grid-connected photovoltaic(PV) system for urban residential and commercial sector applications. The integration of PV technology into roof of houses is an approach that is being championed in Germany, Japan and United states etc. In the Korea, PV roofing systems already are given the large number of houses which are projected to be built by 2012. However unlike germany and Japan, urban scale grid-connected PV system is not yet installed. The solar city which is installed building-integrated photovoltaic system is available to use of renewable energy sources such as solar to meet demand, instead of fossil fuels, with the goal of realizing an ecologically oriented energy supply.

The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors (실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가)

  • Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Ji-Seong;Park, Se-Hyeon;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

SysML-Based System Modeling for Design of BIPV Electric Power Generation (건물일체형 태양광 시스템의 전력발전부 설계를 위한 SysML기반 시스템 모델링)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.578-589
    • /
    • 2018
  • Building Integrated Photovoltaic (BIPV) system is a typical integrated system that simultaneously performs both building function and solar power generation function. To maximize its potential advantage, however, the solar photovoltaic power generation function must be integrated from the early conceptual design stage, and maximum power generation must be designed. To cope with such requirements, preliminary research on BIPV design process based on architectural design model and computer simulation results for improving solar power generation performance have been published. However, the requirements of the BIPV system have not been clearly identified and systematically reflected in the subsequent design. Moreover, no model has verified the power generation design. To solve these problems, we systematically model the requirements of BIPV system and study power generation design based on the system requirements model. Through the study, we consistently use the standard system modeling language, SysML. Specifically, stakeholder requirements were first identified from stakeholders and related BIPV standards. Then, based on the domain model, the design requirements of the BIPV system were derived at the system level, and the functional and physical architectures of the target system were created based on the system requirements. Finally, the power generation performance of the BIPV system was evaluated through a simulated SysML model (Parametric diagram). If the SysML system model developed herein can be reinforced by reflecting the conditions resulting from building design, it will open an opportunity to study and optimize the power generation in the BIPV system in an integrated fashion.

Evaluation of Electricity Generation According to Installation Type of Photovoltaic System in Residential Buildings (주거용 건물 태양광발전시스템의 설치유형에 따른 발전성능 평가)

  • Kim, Deok-Sung;Kim, Beob-Jeon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • The types of installation of the photovoltaic system applied to domestic residential buildings are classified as follows: Mounted modules with air circulation, semi-integrated modules with air duct behind, integrated modules with fully insulated back. In order to study generation characteristics of PV system, we verified the validity of interpretation program based on long-term measurement data of demonstration house installed in BAPV form and also analyzed the generation characteristics and performance of each installation type. The results are as follows. First, the RMSE of amount of generation and simulation according to annual daily insolation of demonstration system located in Daejeon was 0.98kWh and the range of relative error of monthly power generation was -5.8 to 3.1. Second, the average annual PR of mounted modules was 82%, semi-integrated modules 76.1% and integrated modules 71.9%. This differences were attributed to temperature loss. Third, the range of operating temperature of annual hourly photovoltaic modules was -6.5 to $61.0^{\circ}C$ for mounted modules, $-6.0{\sim}73.9^{\circ}C$ for semi-integrated modules and -5.5 to $88.9^{\circ}C$ for integrated modules. The temperature loss of each installation type was -14.0 to 16.1%, -13.8 to 21.9%, and -13.6 to 28.5%, respectively.

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.