• Title/Summary/Keyword: 갭 효과

Search Result 199, Processing Time 0.022 seconds

The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory (실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구)

  • Kim, Taeyoon;Kwon, Yongju;Kang, Choonghyun;Kim, Jongyoung;Shin, Hyun Suk;Kwon, Soonchul;Cha, Sung Min
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2018
  • In this study, we analyzed the removal efficiency of ammonia nitrogen and phosphate dependant on the column depths using various absorbents such as zeolite silica sand, and activated carbon through the column test. In addition, we analyzed electrochemical adsorption behaviors of ammonia nitrogen and phosphate through the quantum mechanical calculation based on density functional theory calculation. Experimental results represent the removal efficiency of ammonia nitrogen and phosphate are zeolite > activated carbon > silica sand, and activated carbon > zeolite > silica sand, respectively. Zeolite shows high adsorption property for ammonia nitrogen over 90%, regardless of the column depth, while activated carbon exhibits high adsorption property for both ammonia nitrogen and phosphate as the column depth for filter media increases. Theoretical findings using DFT calculation for the adsorption behaviors of adsorbents (activated carbon and silica sand) and nutrients ($PO_4{^{3-}}$, $NH_4{^{+}}$) show that activated carbon represented narrower HOMO-LUMO band gap with high adsorption energy, and even more favorable environment for electron adsorption than silica sand, which leads to the effective removal of nutrients.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Optical Properties of SiNx Thin Films Grown by PECVD at 200℃ (200℃의 저온에서 PECVD 기법으로 성장한 SiNx 박막의 열처리에 따른 광학적 특성 변화 규명)

  • Lee, Kyung-Su;Kim, Eun-Kyeom;Son, Dae-Ho;Kim, Jeong-Ho;Yim, Tae-Kyung;An, Seung-Man;Park, Kyoung-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • We deposited $SiN_x$ thin films by using PECVD technique at $200^{\circ}C$ with various flow ratios of the $SiH_4/N_2$ gases. The photoluminescence measurements revealed that the maximum emission wavelength shifted to long wavelength as the ratio increased, however, positions of the several peak wavelengths, such as 1.9, 2.2, 2.4, and 3.1 eV, were independent on the ratio. Changes of the photoluminescence spectra were measured in the $N_{2}-$, $H_{2}-$, and $O_2$-annealed films. The luminescence intensities increased after the annealing process. In particular, the maximum emission wavelength shifted to short wavelength after $H_{2}-$ or $O_2$-annealing. But there were still several peaks on the spectra of all annealed films, several peak positions remained to be unchanged after the annealing. As for the light emission mechanism, we have considered the defect states of the Si- and N- dangling bonds in the $SiN_x$ energy gap, so that the energy transitions from/to the conduction/valence bands and the defect states in the gap were attributed to the light emission in the $SiN_x$ films. The experimental results point to the possibility of a Si-based light emission materials for flexible Si-based electro-optic devices.

Growth and optical properties for MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot wall epitaxy법에 의한 MgGa2Se4 단결정 박막 성장과 광학적 특성)

  • Moon, Jong-Dae;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 2011
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. The crystal structure of these compounds has a rhombohedral structure with lattice constants $a_0=3.953\;{\AA}$, $c_0=38.890\;{\AA}$. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of $MgGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method were $6.21{\times}10^{18}\;cm^{-3}$ and 248 $cm^2/v{\cdot}s$ at 293 K, respectively. The optical absorption of $MgGa_2Se_4$ single crystal thin films was investigated in the temperature range from 10 K to 293 K. The temperature dependence of the optical energy gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's equation, $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=2.34\;eV$, ${\alpha}=8.81{\times}10^{-4}\;eV/K$ and ${\beta}=251\;K$, respectively.

Structural and optical properties of TiO2 thin films prepared by Sol-Gel dip coating method (졸-겔 침지코팅법으로 제조된 TiO2 박막의 구조적.광학적 특설)

  • 김동진;이학준;한성홍;김의정
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The TiO$_2$ coating solutions were synthesized with different concentrations (T1-0.7N, T2-2.0N) of hydrochloric acid used as catalyst. and TiO$_2$ thin films were prepared by sol-gel dip coating. Their structural and optical properties were examined as a function of calcination temperature. XRD results showed that T1 thin films calcined at 400~80$0^{\circ}C$ had the anatase phase, while those calcined at 100$0^{\circ}C$ had the rutile phase. T2 thin films calcined at 40$0^{\circ}C$ and $600^{\circ}C$ had the anatase phase, with the rutile phase for calcination at 80$0^{\circ}C$. Crystallinity of T2 thin films was superior to that of T1 thin films. The crystallite size of TiO$_2$ thin films increased with increasing calcination temperature, and the crystallite size of anatase phase in T2 thin films was larger than that in T1 thin films, but the crystallite size of rutile phase in T2 thin films was smaller. The surface morphology of the films showed that the films were formed more densely in the rutile phase than in the anatase phase, this phenomenon appeared conspicuously in T2 thin films. The transmittance of the samples with thin films on quartz glass calcined at 100$0^{\circ}C$ was significantly reduced at wavelength range about 300-700 nm due to the increased absorption originating from the change of crystallite phase and composition of the films and the scattering effect originating from increasing crystallite size. The refractive index of TiO$_2$ thin films increased, and hence the film thickness as well as the porosity of TiO$_2$ thin films decreased with increasing calcination temperature. Furthermore, the refractive index of T2 thin films was higher than T1 thin films, and porosity of T2 films was lower.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode (MnO2 조촉매가 코팅된 GaN 광전극의 광전기화학적 특성)

  • Kim, Haseong;Bae, Hyojung;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.113-117
    • /
    • 2016
  • Recently, hydrogen is regarded as important energy in the future, because it is clean and renewable. The photoelectrochemical (PEC) system, which produce hydrogen using water splitting by solar energy, is one of the most promising energy systems because it has abundant energy sources and good theoretical efficiency. GaN has recently been regarded as suitable photoelectrode that could be used to split water to generate hydrogen without extra bias because its band edge position include water redox potential ($V_{redox}=1.23$ vs. SHE). GaN also shows considerable corrosion resistance in aqueous solutions and it is possible to control its properties, such as structure, band gap, and catalyst characteristics, in order to improve solar energy conversion efficiency. But, even if the band edge position of GaN make PEC reaction facilitate without bias, the overpotential of oxygen evolution reaction could reduce the efficiency of system. One of the ways to decrease overpotential is introduction of co-catalyst on photoelectrode. In this paper, we will investigate the effect of manganese dioxide ($MnO_2$) as a co-catalyst. $MnO_2$ particles were dispersed on GaN photoelectrode by spincoater and analyzed properties of the PEC system using potentiostat (PARSTAT4000). After coating $MnO_2$, the flat-band potential ($V_{fb}$) and the onset voltage ($V_{onset}$) were moved negatively by 0.195 V and 0.116 V, respectively. The photocurrent density increased on $MnO_2$ coated sample and time dependence was also improved. These results showed $MnO_2$ has an effect as a co-catalyst and it would enhance the efficiency of overall PEC system.

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer (Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상)

  • Yang, Kee-Jeong;Sim, Jun-Hyoung;Son, Dae-Ho;Lee, Sang-Ju;Kim, Young-Ill;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.93-98
    • /
    • 2017
  • This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.