Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.3.017

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers  

Bae, Mi-Seon (Department of Materials Science and Engineering, Chungnam National University)
Jeong, Min Ji (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Chang, Hyo Sik (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Yang, Tae-Youl (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.3, 2021 , pp. 17-24 More about this Journal
Abstract
Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.
Keywords
stability; buffer; degradation; diffusion; perovskite solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. J Zhao, Y. Deng, H. Wei, X. Z. Z. Yu, Y. Shao, J. E. Shield, J. Huang, "Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells", Science advances, 3, eaao5616 1-8 (2017).   DOI
2 S. J. Lee, S. S. Shin, Y. C. Kim, D. S. Kim, T. K. Ahn, J. H. Noh, J. W. Seo, and S. Il Seok, "Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex", Journal of the American Chemocal Society, 138, 3974-3977 (2016).   DOI
3 Y. Hou, E. Aydin, M. D. Bastiani, C. Xiao, F. H. Isikgor, D. J Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S. W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. V. Kerschaver, M. I. Saidaminov, D. Baran, Q. Qiao, Kai Zhu, S. D. Wolf, E. H. Sargent, "Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon", Science, 367, 1135-1140 (2020).   DOI
4 J. Xu, C. C., Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf,W. Weigand, S. Manzoor, M. F. A. M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman5, M. D. McGehee, "Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems", Science, 367, 1097-1104(2020).   DOI
5 J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. S. Liu, N. D. Marco and Y. Yang, "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers", Nature nanotechnology, 11, 75-81 (2016).   DOI
6 T. Bu, J. Li, H. Li, C. C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin, N. Chai, X. L. Zhang, J. J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y. B. Cheng, F. Huang, "Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules", Science, 372, 1327-1332 (2021).   DOI
7 H. Tan, A. Jain, O. Voznyy, X. Z. Lan, F. P. G. d. Arquer, J. Z. Fan, R. Q. Bermudez, M. Yuan, B. Zhang, Y. C. Zhao, F. Fan, P. Li, L. N. Quan, Y. B. Zhao, Z. H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, "Efficient and stable solution-processed planar perovskite solar cells via contact passivation", Science, 355, 722-726 (2017).   DOI
8 K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, and M. D. McGehee, "23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells With Improved Stability", Nature Energy, 2, 17009 1-17 (2017).   DOI
9 G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T. W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, R. J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H. G. Boyen, S. Bent, F. Giustino, L. M. Herz, M. B. Johnston, M. D. McGehee, H. J. Snaith, "Perovskite-perovskite tandem photovoltaics with optimized band gaps", Science, 354, 861-865 (2016).   DOI
10 M. Jost, L. Kegelmann, L. Korte, and S. Albrecht, "Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency", Advanced. Energy Materials, 10, 1904102 1-43 (2020).   DOI
11 D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. K. B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells", Science, 351, 151-155 (2016).   DOI
12 G. Y. Kim, A. Senocrate, T. Y. Yang, G. Gregori, M. Gratzel and J. Maier, "Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition", Nature materials, 17, 445-449 (2018).   DOI
13 D. H. Kim, H. J. Jung, I. J. Park, B. W. Larson, S. P. Dunfield, C. Xiao, J. K. Kim, J. H. Tong, P. Boonmongkolras, S. G. Ji, F. Zhang, S. R. Pae, M. K. Kim, S. B. Kang, V. Dravid, J. J. Berry, J. Y. Kim, K. Zhu, D. H. Kim, B. H. Shin, "Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites", Science, 368, 155-160 (2020).   DOI
14 S. J. Park,, S. G. Ji, & J. Y, Kim, "Inorganic charge transport materials for high reliable perovskite solar cells"(in korean), ceramist, 23(2), 31616 145-165 (2020).
15 M. T. Kam, Q. Zhang, D. Q. Zhang, Z. Y. Fan., "Room-temperature sputtered SnO2 as robust electron transport layer for air-stable and efficient perovskite solar cells on rigid and flexible substrates", Scientific reports, 9, 6963 1-10 (2019).   DOI
16 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, & H. J. Snaith, "Efficient hybrid solar cells based on meso-super-structured organometal halide perovskites", Science, 338, 643-647 (2012).   DOI
17 S. Yang, S. S. Chen, E. Mosconi, Y. J. Fang, X. Xiao, C. C. Wang, Y. Zhou, Z. Yu, J. J. Zhao, Y. Gao, F. D. Angelis, J. S. Huang, "Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts", Science, 365, 473-478 (2019).   DOI
18 K.O. Brinkmann, J. Zhao, N. Pourdavoud, T. Becker, T. Hu, S. Olthof, K. Meerholz, L. Hoffmann, T. Gahlmann, R. Heiderhoff, M.F. Oszajca, N.A. Luechinger, D. Rogalla, Y. Chen, B. Cheng & T. Riedl, "Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells", Nature Communication, 8, 13938 1-9 (2017).   DOI
19 X. Liu, L. J. Guo and Y. H. Zheng, "5-nm LiF as an Efficient Cathode Buffer Layer in Polymer Solar Cells Through Simply Introducing a C60 Interlayer", Nanoscale Research Letters, 12, 543 1-7 (2017).   DOI
20 S. J. Lee, T. Y. Yang, S. J. Lee, J. W. Seo and J. H. Noh, " 할로겐화물 페로브스카이트 태양전지"(in korean), 공업화학 전망, 20, 59-76 (2017)
21 A. A. Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, "Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction", Science, 370, 1300-1309 (2020).   DOI
22 D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrantab and S. A. Haque, "Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells", Energy&Environmental Science, 9, 1655-1660 (2016).   DOI
23 J. Liu, S. K. Pathak, N. Sakai, R. Sheng, S. Bai, Z. Wang, and Henry J. Snaith, " Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole-Transporter", Advanced Material Interfaces, 3, 1600571 1-9 (2016).   DOI
24 X. Li, S. Fu, W. Zhang, S. Ke, W. Song, J. Fang, "Chemical anti-corrosion strategy for stable inverted perovskite solar cells', Science Advances, 6, eabd1580 2-10 (2020).   DOI
25 I. Hwang, I. Jeong, J. Lee, M. J. Ko, & K. Yong, "Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation", ACS Appled Materials&Interfaces, 7, 17330-17336 (2015).   DOI
26 C. C. Boyd, R. Cheacharoen, K. A. Bush, R. Prasanna, T. Leijtens, and M. D. McGehee, "Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells", ACS Energy Letters, 3, 1772-1778 (2018).   DOI
27 M. Mohammadi, M. Eskandari, & D. Fathi, "Effects of the location and size of plasmonic nanoparticles (Ag and Au) in improving the optical absorption and efficiency of perovskite solar cells", Journal of Alloys and Compounds, 877, 160177 1-16 (2021).   DOI
28 P. L. Qin, Q. He, C. Chen, X. L. Zheng, G. Yang, H. Tao, L. B. Xiong, L. Xiong, G. Li, and G. J. Fang, "High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials", Solar. RRL, 1, 1700058 1-10 (2017).   DOI
29 W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. G. Seo, E. K. Kim, J. H. Noh, S. Il Seok, "Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells", Science, 356, 1376-1379 (2017).   DOI
30 M. Thambidurai, F. Shini, P. C. Harikesh, N. Mathews, and C. Dang, "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide", Journal of Power Sources, 9, 227362 3128-3134 (2016).
31 S. You, H. Wang, S. Bi, J. Zhou, L. Qin, X. Qiu, Z. Zhao, Y. Xu, Y. Zhang, X. H. Shi, H. Zhou, and Z. Tang, "A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells", Advanced. Materials, 30, 1706924 1-8 (2018).   DOI
32 J. Wang, K. Datta, C. H. L. Weijtens, M. M. Wienk, & R. A. J. Janssen, "Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells", Advanced Functional Materials, 29, 1905883 1-12 (2019).   DOI
33 J. P. C. Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, "Promises and challenges of perovskite solar cells", Science, 358, 739-744 (2017).   DOI
34 S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells", Nano Letters, 14, 5561-5568 (2014).   DOI