DOI QR코드

DOI QR Code

MnO2 조촉매가 코팅된 GaN 광전극의 광전기화학적 특성

MnO2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode

  • Kim, Haseong (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Kang, Sung-Ju (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 투고 : 2016.12.15
  • 심사 : 2016.12.22
  • 발행 : 2016.12.31

초록

수소를 생산하는 방법 중 하나로, 광전기화학적(photoelectrochemical; PEC) 물 분해 시스템은 높은 이론적 효율을 가진 친환경적이고 경제적인 방법이다. 광전극으로서 질화갈륨(gallium nitride; GaN)은 내화학성이 좋고 밴드갭이 물의 산화환원준위($V_{redox}=1.23$ V vs. SHE)를 포함하여 외부 전압 없이 수소를 생산할 수 있는 시스템을 구축할 수 있다. 그러나 이때 발생하는 높은 산소 발생 과전압은 시스템의 반응 효율을 저하시킨다. 산소 발생 과전압을 줄이기 위한 방법으로 광전극에 조촉매를 이용하는 방법이 많이 알려져 있다. 본 연구에서는 GaN 광전극에 입자 형태의 이산화망간(manganese dioxide; $MnO_2$)을 조촉매로 도입하여 PEC 시스템의 특성을 분석하고자 한다. $MnO_2$가 광전극에 잘 형성되었는지를 확인하기 위하여 표면분석을 수행하였고, potentiostat(PARSTAT4000)을 이용해 PEC 특성을 분석해 평가하였다. $MnO_2$가 코팅됨에 따라 flat-band potential($V_{fb}$)과 onset voltage($V_{onset}$)가 각각 음의 방향으로 0.195 V, 0.116 V 이동하는 것이 확인되었다. 광전류밀도 값에 대해서도 $MnO_2$ 코팅 샘플이 더 높게 나타나며, 시간에 따른 광전류의 저하도 개선되었다. 이로부터 $MnO_2$이 조촉매로서 효과가 있음을 확인하였고, PEC 시스템 전반에 걸쳐 효율 향상에 기여할 수 있을 것으로 기대된다.

Recently, hydrogen is regarded as important energy in the future, because it is clean and renewable. The photoelectrochemical (PEC) system, which produce hydrogen using water splitting by solar energy, is one of the most promising energy systems because it has abundant energy sources and good theoretical efficiency. GaN has recently been regarded as suitable photoelectrode that could be used to split water to generate hydrogen without extra bias because its band edge position include water redox potential ($V_{redox}=1.23$ vs. SHE). GaN also shows considerable corrosion resistance in aqueous solutions and it is possible to control its properties, such as structure, band gap, and catalyst characteristics, in order to improve solar energy conversion efficiency. But, even if the band edge position of GaN make PEC reaction facilitate without bias, the overpotential of oxygen evolution reaction could reduce the efficiency of system. One of the ways to decrease overpotential is introduction of co-catalyst on photoelectrode. In this paper, we will investigate the effect of manganese dioxide ($MnO_2$) as a co-catalyst. $MnO_2$ particles were dispersed on GaN photoelectrode by spincoater and analyzed properties of the PEC system using potentiostat (PARSTAT4000). After coating $MnO_2$, the flat-band potential ($V_{fb}$) and the onset voltage ($V_{onset}$) were moved negatively by 0.195 V and 0.116 V, respectively. The photocurrent density increased on $MnO_2$ coated sample and time dependence was also improved. These results showed $MnO_2$ has an effect as a co-catalyst and it would enhance the efficiency of overall PEC system.

키워드

참고문헌

  1. D. S. Scott, "Inside fuelcells", Int. J. Hydrogen Energy, 29(12), 1203 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.013
  2. S. Eaves and J. Eaves, "A cost comparison of fuel-cell and battery electric vehicles", J. Power Sources, 130(1), 208 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.016
  3. S. Singh, S. Jain, P. S. Venkateswaran, A. K. Tiwari, M. R. Nouni, J. K. Pandey and S. Goel, "Hydrogen: A sustainable fuel for future of the transport sector", Renwe. Sust. Energ. Rev., 51, 623 (2015). https://doi.org/10.1016/j.rser.2015.06.040
  4. O. S. Joo, "Hydrogen Production Technology", Korean Chem. Eng. Res., 49(6), 688 (2011). https://doi.org/10.9713/kcer.2011.49.6.688
  5. N. Z. Muradov and T. N. Veziroglu, " "Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies", Int. J. Hydrogen Energy, 33(23), 6804 (2008). https://doi.org/10.1016/j.ijhydene.2008.08.054
  6. K. S. Ahn, "Photoelectrochemical Water-Splitting Cells for H 2 Production", J. Korean. Vac. Soc., 18(5), 331 (2009). https://doi.org/10.5757/JKVS.2009.18.5.331
  7. M. Gratzel, "Photoelectrochemical cells", Nature, 414(6861), 338-344 (2001). https://doi.org/10.1038/35104607
  8. H. J. Bae, J. B. Park, K. C. Jung, A. Nakamura, K. Fujii, H. J. Park, T. Jeong, H. J. Lee, Y. B. Moon and J. S. Ha, "The Polarity Effect on the Photoelectrochemical Properties of Gaand N-Face Free-Standing GaN Substrate", Jpn. J. Appl. Phys., 52(8S), 08JN26 (2013). https://doi.org/10.7567/JJAP.52.08JN26
  9. A. J. Nozik and R. Memming, "Physical chemistry of semiconductor-liquid interfaces", J. Phys. Chem., 100(31), 13061 (1996). https://doi.org/10.1021/jp953720e
  10. K. Fujii, K. Kusakabe and K. Ohkawa, "Photoelectrochemical properties of InGaN for $H_2$ generation from aqueous water", Jpn. J. Appl. Phys., 44(10R), 7433 (2005). https://doi.org/10.1143/JJAP.44.7433
  11. J. Yang, D. Wang, H. Han and C. Li, "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Acc. Chem. Res., 46(8), 1900 (2013). https://doi.org/10.1021/ar300227e
  12. M. M. Najafpour, T. Ehrenberg, M. Wiechen and P. Kurz, "Calcium Manganese (III) Oxides-($CaMn_2O_4{\cdot}x\;H_2O$) as Biomimetic Oxygen-Evolving Catalysts", Angew. Chem. Int. Ed., 49(12), 2233 (2010). https://doi.org/10.1002/anie.200906745
  13. R. Abe, "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation", J. Photochem. Photobiol. C, 11(4), 179 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  14. Y. Gorlin and T. F. Jaramillo, "A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation", J. Am. Chem. Soc., 132(39), 13612 (2010). https://doi.org/10.1021/ja104587v
  15. K. L. Pickrahn, S. W. Park, Y. Gorlin, H. B. R. Lee, T. F. Jaramillo and S. F. Bent, "Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions", Adv. Energy Mater., 2(10), 1269 (2012). https://doi.org/10.1002/aenm.201200230
  16. Y. Okuno, O. Yonemitsu and Y. Chiba, "Manganese dioxide as specific redox catalyst in the photosensitized oxygen generation from water", Chem. Lett., (6), 815 (1983).
  17. B. A. Pinaud, Z. Chen, D. N. Abram and T. F. Jaramillo, "Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry", J. Phys. Chem. C, 115(23), 11830 (2011). https://doi.org/10.1021/jp200015p
  18. P. U. Asogwa, S. C. Ezugwu and F. I. Ezema, "Variation of optical and solid state properties with post deposition annealing in PVA-Capped $MnO_2$ thin films", Superficies y vacio, 23(1), 18 (2010).

피인용 문헌

  1. p-type GaN의 Activation을 통한 광전기화학적 특성 향상 vol.24, pp.4, 2017, https://doi.org/10.6117/kmeps.2017.24.4.059
  2. Carbon Nanotube Passivation layer for Increasing the Solar Water Splitting Performance of CdS/CuInGaSe Photocathode vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.107
  3. Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application vol.27, pp.4, 2016, https://doi.org/10.6117/kmeps.2020.27.4.039