Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.042

Optical Properties of SiNx Thin Films Grown by PECVD at 200℃  

Lee, Kyung-Su (University of Seoul, Department of Nano Science and Technology)
Kim, Eun-Kyeom (University of Seoul, Department of Nano Engineering)
Son, Dae-Ho (University of Seoul, Department of Nano Science and Technology)
Kim, Jeong-Ho (University of Seoul, Department of Nano Science and Technology)
Yim, Tae-Kyung (University of Seoul, Department of Nano Science and Technology)
An, Seung-Man (University of Seoul, Department of Nano Science and Technology)
Park, Kyoung-Wan (University of Seoul, Department of Nano Science and Technology)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 42-49 More about this Journal
Abstract
We deposited $SiN_x$ thin films by using PECVD technique at $200^{\circ}C$ with various flow ratios of the $SiH_4/N_2$ gases. The photoluminescence measurements revealed that the maximum emission wavelength shifted to long wavelength as the ratio increased, however, positions of the several peak wavelengths, such as 1.9, 2.2, 2.4, and 3.1 eV, were independent on the ratio. Changes of the photoluminescence spectra were measured in the $N_{2}-$, $H_{2}-$, and $O_2$-annealed films. The luminescence intensities increased after the annealing process. In particular, the maximum emission wavelength shifted to short wavelength after $H_{2}-$ or $O_2$-annealing. But there were still several peaks on the spectra of all annealed films, several peak positions remained to be unchanged after the annealing. As for the light emission mechanism, we have considered the defect states of the Si- and N- dangling bonds in the $SiN_x$ energy gap, so that the energy transitions from/to the conduction/valence bands and the defect states in the gap were attributed to the light emission in the $SiN_x$ films. The experimental results point to the possibility of a Si-based light emission materials for flexible Si-based electro-optic devices.
Keywords
Optical properties; SiNx; Si nanodots; Dangling bond; Defect; Plasma enhanced chemical vapor deposition; Photoluminescence; Low temperature deposition; Annealing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007).   DOI
2 S. Fujita, J. Electronchem. Soc. 132, 398 (1985).   DOI
3 W. L. Warren, P. M. Lenahan. and S. E. Carry, Phys. Rev. Lett. 65, 207 (1991).
4 T. Shimizu, J. Non-Cryst. Solids 59, 117 (1985).
5 C. -F. Lin, W. -T. Tseng, and M. S. Feng, J. Appl. Phys. 87, 2808 (2000).   DOI
6 E. Holzenkampfer, F. -W. Richter, J. Stuke, and U. Voget-Grote, J. Non-Cryst. Solids 32, 327 (1979).   DOI
7 K. -M. Lee, T. -H. Kim, J. -D. Hwang, S. H. Jang, K. Y. Jeong, M. S. Han, S. H. Won, J. H. Sok, K. W. Park, and W. -S. Hong, Scripta. Mater. 60, 703 (2009).   DOI
8 A. Iqbal, W. B. Jackson, C. C. Tsai, and J. W. Allen, J. Appl. Phys. 61, 2947 (1987).   DOI
9 P. A. Pundur, J. G. Shavalgin, and V. A. Gritsenko, Phys. Status Solidi. A 94, K107 (1986).   DOI
10 J. Robertson, J. Appl. Phys. 54, 4490 (1983).   DOI
11 J. Robertson and M. J. Powell, Appl. Phys. Lett. 44, 415 (1984).   DOI
12 M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, Appl. Phys. Lett. 84, 2163 (2004).   DOI
13 K. S. Min, K. V. Shcheglov, C. M. Yang, and H. A. Atwater, Appl. Phys. Lett. 69, 2033 (1996).   DOI
14 H. Z. Song and X. M. Bau, Phys. Rev. B 55, 6988 (1977).
15 N. -M. Park, C. -J. Choi, T. -Y. Seong, and S. -J. Park, Phys. Rev. Lett. 86, 1355 (2001).   DOI
16 B. -H. Kim, C. -H. Cho, T. -W. Kim, N. -M. Park, G. Y. Sung, and S. -J. Park, Appl. Phys. Lett. 86, 091908 (2005).   DOI
17 G. F. Grom, D. J. Lockwood, J. P. McCaffrey, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, Nature 407, 358 (2000).   DOI
18 M. Zacharias, J. Heitmann, R. Scholz, and U. Kahler, Appl. Phys. Lett. 80, 661 (2002).   DOI
19 M. V. Wolkin, J. Jorne, and P. M. Fauchet, Phys. Rev. Lett. 82, 197 (1999).   DOI
20 Y. J. Park, T. K. Lee, C. H. Lee, and E. K. Kim, J. Korean Phys. Soc. 44, 700 (2004).   DOI   ScienceOn
21 J. -S. Bae, S. -H. Choi, J. K. Han, and D. W Moon, J. Korean Phys. Soc. 43, 557 (2003).   과학기술학회마을
22 K. H. Park, Y. Kim, T. H. Chung, H. J. Bark, J. Y. Yi, W. C. Choi, and E. K. Kim, J. Korean Phys. Soc. 39, S283 (2001).
23 M. -G. Kim, Z. Yun, J. Lyon, S. Cho, Y. J. Park, and E. K. Kim, J. Korean Phys. Soc. 38, 750 (2001).   과학기술학회마을
24 J. H. Kang, Y. D. Kim, K. M. Cha, H. J. Cheong, and Y. Kim, J. Korean Phys. Soc. 45, 1065 (2004).   과학기술학회마을
25 J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, Appl. Phys. Lett. 83, 5479 (2003).   DOI
26 S. Lee, B. Y. Park, K. W. Park, C. H. Bae, S. M. Park, C. J. Choi, and S. J. Lee, J. Korean Phys. Soc. 51, S308 (2007).   DOI
27 C. Ko, J. Joo, M. Han, B. Y. Park, J. H. Sok, and K. Park, J. Korean Phys. Soc. 48, 1277 (2006).   과학기술학회마을
28 Light Emission in Silicon: From physics to Device, edited by D. J. Lockwook (Academic Press, SanDiego, 1998), Chapter 1.
29 L. T. Canham, Nature 408, 411 (2000).   DOI   ScienceOn
30 L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).   DOI