• Title/Summary/Keyword: 강판 콘크리트 구조

Search Result 173, Processing Time 0.02 seconds

Behavior of Composite Structure by Nonlinearity of Steel-concrete Interface(II) -Behavior of Steel-Concrete Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동 (II) -강·콘크리트 경계면의 거동 특성-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.509-518
    • /
    • 2003
  • In this study, we carried out nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed interface behavior such as distribution of tangential traction and relative slip in steel-concrete composite structure. As a result of this study, tangential traction and relative slip of interface is rapidly increased at the steel plate-concrete interface, especially at the neutral region, rather than tensile, as opposed to the T beam-concrete interface. In transverse direction, it has gradually reduced to go outside from loading position. In longitudinal direction, it was minimum at the central region near the loading point, maximum at 0.6-0.7L from support and gradually reduced as it nears support. Moreover, as the load is increased, the failure of interface gradually expands from the maximum tangential traction position to the entire region. It is expected to provide fundamentality for interface behavior and load-carrying mechanism, and for the design of bending and shear connection of steel-concrete composite structure.

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Dynamic Response of Steel Plate Girder Bridges by the KL-510 Load (KL-510 하중에 의한 강판형교의 동적응답)

  • Chung, Tae-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.50-60
    • /
    • 2013
  • Dynamic response of steel plate girder bridges by KL-510 design truck in KHBDC considering the road surface roughness of bridges and bridge-vehicle interaction is investigated. Simply supported steel plate girder bridges with span length of 20m, 30m, and 40m from "Standard Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for a bridge model, and ten sets of the road surface roughness of bridge deck are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight, which is the same as that of KL-510 design truck, is used for dynamic analysis. For the finite element modeling of superstructure, beam element for the main girder, shell element for the concrete deck, and rigid link between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different span are calculated by the proposed numerical analysis model and compared with those specified by several bridge codes.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

A Study for Structural Behavior of R./C beams Strengthened with New Bonding Methods (보강재의 변형 부착에 따른 보의 구조적 거동)

  • 한만엽;송병표
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 1998
  • 최근들어 손상된 실구조물의 보강공법들이 적용,발전되어왔다. 가장 보편적으로 사용된공법이 강판과 탄소섬유를 이용한 공법이지만, 이론적인 배경과 적용기술이 아직은 정립되어었지 않은 상태이다. 강판보강의 경우 단부에서의 응력집중이 보강 효과를 결정짓는 가장 중요한 변수이므로, 본 연구에서는 이러한 응력집중을 완화하기 위하여 단부에 보강판과확대판을 부착하여 실험을 하였고, 탄소섬유 보강 실험에서는 다층 시공시 보강량을 조절하여 실험하였다. 실험 결과는 하중-처짐, 항복하중, 최대하중, 보강재의 전단응력의 분포와 보강재의 파괴양상을 분류하여 정리하였다. 실험을 통하여 강판 보강의 경우 본 연구에서 제안된 단부에서의 보강방법이 보강효과가 향상된 것을 확인하였고 탄소섬유 보강시에는 탄소섬유의 보강량을 조절함으로써 경제적인 설계와 시공이 가능한 것으로 나타났다.

A Study on the Flexural Behavior of Steel Plate Reinforced RC Beam by Anchor Conjugation (앵커 접합 방법에 따른 강판 보강 RC보의 휨 거동에 관한 연구)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.103-111
    • /
    • 2010
  • Most of apartments, buildings and venues today were built without consideration of earthquake when there was no mandate for an earthquake-resistant design. To reinforce such construction, a compressive method of steel plate is widely used. In spite of continuous researches on the compressive method of steel plate, it has not been systematically evaluated for the effects of various factors affecting the structural behavior of beam and its effect on intensity and failure. Therefore, this study aims to determine the flexural behavior of beam due to Anchor conjugation through the materials obtained by making load test for the Anchor conjugated steel plate while the anchor is set as variable.

  • PDF

A Development of Torsional Analysis Model and Parametric Study for PSC Box Girder Bridge with Corrugated Steel Web (복부 파형강판을 사용한 PSC 복합 교량의 비틀림 해석모델의 제안 및 변수해석)

  • Lee, Han-Koo;Kim, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.281-288
    • /
    • 2008
  • The Prestressed Concrete (hereinafter PSC) box girder bridges with corrugated steel webs have been drawing an attention as a new structure type of PSC bridge fully utilizing the feature of concrete and steel. However, the previous study focused on the shear buckling of the corrugated steel web and development of connection between concrete flange and steel web. Therefore, it needs to perform a study on the torsional behavior and develop the rational torsional analysis model for PSC box girder with corrugated steel web. In this study, torsional analysis model is developed using Rausch's equation based on space truss model, equilibrium equation considering softening effect of reinforced concrete element and compatibility equation. Validation studies are performed on developed model through the comparison with the experimental results of loading test for PSC box girder with corrugated steel webs. Parametric studies are also performed to investigate the effect of prestressing force and concrete strength in torsional behavior of PSC box girder with corrugated steel web. The modified correction factor is also derived for the torsional coefficient of PSC box girder with corrugated steel web through the parametric study using the proposed anlaytical model.