• Title/Summary/Keyword: 강부재

Search Result 678, Processing Time 0.021 seconds

Quality characteristics of fermented vinegars using pear (배를 이용한 발효식초의 품질특성)

  • Park, Yeon-Ok
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.778-787
    • /
    • 2016
  • Fermented vinegars using pear was compared according to the appled side materials. Quality characteristics of three kinds of the fermented vinegars (pear vinegar, PV; pear black rice vinegar, PBV; pear mint vinegar, PMV) were investigated, which includes pH, total acidity, colors, the contents of sugar, amino acids, total polyphenol, and total flavonoid, ${\alpha}^{\prime}{\alpha}-diphenyl-{\beta}-pycrylhydrazyl$ (DPPH) radical scavenging ability, and sensory evaluation. Brown rice vinegar (BRV) was used as a control. The pH and total acidity of the fermented pear vinegars were significantly different showing the range of 3.17~3.43 and 4.01~5.05%, respectively (p<0.05). The sugar contents of PV and PMV were significantly higher than other vinegars (p<0.05). L, a, and b values were the highest in PV, PBV, and PMV, respectively. Among the four vinegars, the essential amino acids were the highest in PV with the order of lysine, isoleucine, valine, and threonine. Besides, the fermented pear vinegars have many non-essential amino acids such as glutamic acid and aspartic acid. The aspartic acid content was the highest in PV while glutamic acid content was the highest in BRV. The total polyphenol content was the highest in PV while total flavonoid content was the highest in PBV. The DPPH radical scavenging ability (%) was the highest in PV. In sensory evaluation, PBV showed the highest color, taste and overall preference scores. These results show that pear would be desirable to prepare high-quality vinegars and functional foods.

Antioxidant and Anti-inflammatory Activities of Functional Plant Materials (항산화 및 면역 활성 증강을 위한 생약재의 탐색)

  • Lee, Soo-Jung;Shin, Jung-Hye;Lee, Hye-Jin;Tak, Hyun-Min;Kang, Min-Jung;Sung, Nak-Ju
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.869-878
    • /
    • 2013
  • Eleven functional plant materials were identified via a literature search, and their antioxidant capacity and inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells were tested. Yields from hot water extracts of the materials were the highest (52.10%) in Lycii fructus, and the yields from Phellinus linteus were the lowest (5.7%). The yields of another were 14.50-42.47%. Total phenol and flavonoids contents were the highest in P. linteus. The $EC_{50}$ values for DPPH and ABTS radical scavenging activities were lower than $100{\mu}g/ml$ for Salvia miltiorrhiza, whereas the values for P. linteus, Scutellaria baicalensis, and Paeonia lactiflora were $100-200{\mu}g/ml$. The $EC_{50}$ value for the superoxide anion radical scavenging activity of all the extracts was higher than $300{\mu}g/ml$. P. linteus for the reducing power was shown the highest activity. $Fe^{2+}$ chelating activity was the highest in the Morus alba extract. In an MTT assay, the cell viability of the RAW264.7 LPS-exposed cells was above 80% in extracts of $50{\mu}g/ml$ and above 77% in extracts of $100{\mu}g/ml$ in all the plant materials except Acanthopanax sessiliflorum. NO production in the RAW264.7 LPS-exposed cells showed a 12-fold increase compared to the control. The NO production level of all the extracts was $6.86-26.18{\mu}M$. Notably, $100{\mu}g/ml$ of S. baicalensis extract showed a remarkable decrease in NO production (72%) compared with the control. The potent antioxidant and anti-inflammatory activities of S.baicalensis, P. linteus, S. miltiorrhiza, M. alba, and P. lactiflora suggest that they are potential candidates as functional materials.

Growth and morphological characteristics of Polygonatum species indigenous to Korea (한국산 둥굴레속(Polygonatum) 수집종의 생육 및 형태적 특성)

  • Yun, Jong-Sun;Son, Suk-Yeong;Hong, Eui-Yon;Kim, Ik-Hwan;Yun, Tae;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • Morphological characteristics and growth pattern of 10 Polygonatum collections indigenous to Korea were examined to select the promising medicinal, edible resources and horticultural crops. Plant heights of I0 collections ranged from 15 to 102cm. Stem type was ascending or erect, and node numbers per a stem was 6.2 to 23.2. Phyllotaxis type was alternate or verticillate, and leaf shape was elliptical or linear. Leave numbers per a stem was 5.2 to 63.4, and bract types were classified into bracteate and nonbracteate. Flowers bloomed from May 7 to May 30, and flowering period was 5 to 13 days. Inflorescence types were classified into racemose, corymbose, and umbellate. Flower numbers per a stem was 1.5 to 125.2, and flower length was 13.1 to 30.2㎜. Perianth shapes were classified into tubular, constrict and urceolate. Surface colors of rhizome were pale yellow, pale brown, brown, and dark brown. As a result of this experiment, P. sibiricum, P. odoratum var. pluriflorum and P. odoratum var. thunbergii were thought to be useful as the medicinal and edible resources plants. On the other hand, P. odoratum var. pluriflorum 'Variegata', and P. odoratum var. maximowiczii, P. lasianthum. P. involucratum, P. desoulavyi, P. humile, and P. inflatum were thought to be useful as horticultural plants.

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.

A Study on the Taeshil of Great King Jungjo of Joseon (조선 정조대왕 태실 연구(朝鮮 正祖大王 胎室 硏究) - 태실석물(胎室石物)의 구조(構造)와 봉안유물(奉安遺物)의 특징(特徵) -)

  • Yun, Seok In
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.76-101
    • /
    • 2013
  • In this article, we examine the Taeshil of King Jungjo, the 22nd King of the Joseon dynasty located in Yongwol, Gangwondo. The Jangtae culture - burial of the navel cord - is a unique Royal ritual which began during the Shilla dynasty and continued to be carried out for a long period until the Koryo and Joseon dynasties. Until today, about 300 Taebong sites have been discovered, most of which are the Taebong of the decedents of the royal family of the Joseon Kingdom. Most Taeshils built for Kings of the Joseon dynasty were destroyed during the Japanese colonial period, among which only a few have been recovered and managed across the nation. The Taeshil of King Jungjo is one of the leading examples among existing Taeshils in Korea which has managed to preserve well enshrined relics as well as literature documents including stone relics in perfect sets. Thus, in order to examine the Taeshil of King Jungjo comprehensively, first of all literary materials related to the construction of King Jungjo's Taeshil such as the Josunwangjosilrok - "Annals of the Choson Dynasty (朝鮮王朝實錄)". "Jungjongdaewang Taesilgabong Euigwe (正宗大王胎室加封儀軌) - Royal activities related to Taeshil, and local historic documents etc were searched and put together, while a focus was placed on examining the geographical location and state of the Taebong, including the specific style of each part of the Taeshil stone and characteristics of enshrined relics. Such materials are believed to have important utility in the future as a basic material to be used for research, maintenance, and restoration of Taeshil relics. So far, Taeshil relics is a field that has not been able to attract much attention from the academic world, however attention has begun to be paid to Taeshil relics due to recent archaeological excavations as well as an approach to artistic history. Academic research results are expected if Taeshil relics are able to be examined comprehensively in future covering various areas such as literature history, archaeology, and artistic history etc.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.