• Title/Summary/Keyword: 간극량

Search Result 240, Processing Time 0.024 seconds

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Comparisons of Drainage Performance on Coarse Grained Soils with Regard to Horizontal Drainage Type (조립질 지반에서의 수평배수재 종류에 따른 배수성능 비교)

  • Teawan Bang;Wanjei Cho;Seunghwan Seo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.25-31
    • /
    • 2023
  • Horizontal drainage, which are representative dewatering method of domestic and foreign slope, are applied to reducing pore water pressure. Accordingly, several previous studies have been conducted, but horizontal drainage are standardized which is an unclean standard for a quantity calculation in filed. Therefore, this study presents field soil and laboratory model box to identify a drainage performance and influencing factors of various horizontal drainage. Furthermore, this study verifies the performance comparison of drainage shape or size according to different particle size distributions. In the outflow results for steady state, the study found that all samples are drained at a constant rate after a minimum of 3 minutes to maximum of 15 minutes. In the case of comparing the outflow per hour (Unit flux) in coarse grained soils, it found that drainage shape and size affect drainage performance. In the result, the future expected to be used basic data that experiment of drainage performance on fine grained soils and determine the quantity.

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

Finite Element Analysis on the Deformation Behavior Safety of a Gas Valve (가스밸브의 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.70-75
    • /
    • 2017
  • This paper presents the FEM analysis results on the deformation behavior safety of automatic cut-off horizontal and conventional vertical gas valves. Based on the FEM analysis, the primary maximum deformation of $4.4{\mu}m$ was formed on the right end side of a valve body when the internal gas pressure was supplied on the screw port and gas discharge port of an automatic cut-off horizontal gas valve. And the secondary maximum deformation of $2.9{\mu}m$ was formed on the end side of safety valve port. This small deformation of an automatic cut-off horizontal gas valve is strongly related to the balanced design of a horizontal gas valve main body, which is composed of a screw part, gas outlet port, port for a stem and spindle shaft assembly, and safety valve port. But, the primary maximum deformation of 0.076mm was formed on the upper part of a conventional automatic cut-off vertical gas valve when the internal gas pressure was supplied on the screw port and gas discharge port. And the secondary maximum deformation of 0.055mm was formed on the left end side of a gas outlet port. This may effect on the sealing clearance of o-ring that is inserted on the groove of an automatic cut-off unit. Thus, this paper recommends an automatic cut-off horizontal gas valve compared with that of a conventional gas valve for a gas leakage free mechanism of a LPG cylinder valve.

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning (Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석)

  • Chae, Deokho;Lee, Jangguen;Kim, Kwang-Yeom;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

The Effect of Cyclic Load Frequency on the Liquefaction Strength of Fine Containing Sands (세립분을 포함하는 모래질 흙의 액상화강도에 미치는 재하속도의 영향)

  • 황대진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.119-132
    • /
    • 1994
  • Undrained cyclic triaxial tests were performed on silt contained in the sand in order to investigate the effect of silt contents on the liquefaction strength and shear characterist ifs of the sand. As the result of this experiment, the weakest percentage of silt contained in the sand was 30% for all the relative density considered in the test. Also, the same bests were performed to find the effect of cyclic speed applied ranging from 0.1Hz to 5Hz on the liquefaction strength. The more the silt is contained in the sand, the greater the liquefaction strength was affected by cyclic speed, While the silt -containing sand was far less influenced by the cyclic speed than clay containing sand. These results are believed to be caused by the change of pore water pressure of the effective stress path.

  • PDF

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbreak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.25-38
    • /
    • 2002
  • 터널 굴착선 여굴(Overbreak)은 발파공법에 의한 괄착 중에 필연적으로 발생하는 현상으로서 숏크리트, 라이닝 등의 보강비 추가 발생과 버력 처리량의 증대로 공기 및 공사비를 증가시키는 주요한 요인으로 작용한다. 또한 터널 굴착선 암반의 손상으로 균열층이 형성되거나 부석이 발생하여 안전문제를 야기시키기도 한다. 이러한 여굴 발생은 천공오차, 발파패턴의 오류, 잘못된 화약선정, 불규칙한 암반 특성 등에 그 원인이 있으나, 지금까지 터널 여굴은 천공 및 발파기술에 의해 좌우된다라는 인식이 대부분이었다. 그러나 여굴 발생에 중요한 원인으로 터널 굴착선 암반의 특성과 이에 적합한 발파패턴 및 화약류를 들 수 있다. 본 연구는 여굴 발생에 영향을 미치는 암반상태를 파악하기 위해서 터널 굴착선 주변암반의 균열정도, 강도, 불연속면의 간격, 방향, 간극, 충전물 상태 등의 6가지 요소를 이용하여 암반을 분류하는 발파암 분류법(BI)을 새로 제안하였고, 이 분류에 따라 외곽 공의 간격과 장약밀도를 달리 하는 발파패턴을 정립하였다. 또한 화약의 순폭도와 Air Deck 효과를 이용하여 장약밀도를 조절할 수 있는 N.D.C(New Deck Charge) 발파공법을 개발함으로써 여굴을 최소화할 수 있었다.

Influences of Coefficient of Permeability and Coefficient of Consolidation on Consolidation of Nonhomogeneous Soils (불균질지반의 압밀에 미치는 투수계수와 압밀계수의 영향)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1391-1395
    • /
    • 2012
  • In order to find out the influences of the coefficient of permeability and the coefficient of consolidation on the consolidation of nonhomogeneous soils, self-developed program was used. For the purpose of analysis, nonhomogeneous soils of two layers which have various values of coefficient of permeability and coefficient of consolidation were assumed and analyzed by the developed program. According to the results obtained by the analysis, coefficient of consolidation has great effect on the distribution of excess pore water pressure and the consolidation settlement whereas coefficient of permeability has little effect on the characteristics of consolidation of nonhomogeneous soils.

A Numerical Study of Blade Sweep Effect in Supersonic Turbine Rotor (초음속 터빈의 로터 블레이드 스윕 효과에 대한 수치적 연구)

  • Jeong, Soo-In;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.830-834
    • /
    • 2011
  • In this study, we performed three-dimensional CFD analysis to investigate the effect of the rotor blade sweep of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for three different sweep cases, No sweep(NSW), Backward sweep(BSW), and Forward sweep(FSW), using flow analysis program, $FLUENT^{TM}$ 6.3 Parallel. The results show that BSW model give the effect on the reducing of mass flow rates of tip leakage and the increasing of t-to-s efficiency.

  • PDF

Evaluation of Under-consolidation State in the Rapidly Deposited Ground (급속퇴적지반의 미압밀상태 평가)

  • 김현태;홍병만;백경종;김상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.89-98
    • /
    • 2003
  • A 5∼12m thick tideland has been created in front of a new sea-dyke due to the rapid sedimentation occurring for 22 years. It is confirmed from theoretical analysis and soil tests that the deposit is in under-consolidation state. An analysis shows that when the average sedimentation rate is over 1-5cm/year for a soil with $c_v$=0.0005-0.001$cm^2$/s, excess pore water pressure exists in the deposit. It is known that the lower sedimentation rate than average in the initial deposition stage results in lower dissipation of excess pore pressure and vice versa. It is emphasized that under-consolidation behavior should be taken account in settlement analysis because structures founded on such deposits give higher settlements.