DOI QR코드

DOI QR Code

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning

Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석

  • Received : 2016.10.21
  • Accepted : 2016.11.24
  • Published : 2017.01.01

Abstract

The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

Chae et al.(2015)에 따르면 동결 사질토의 역학적 거동은 동결온도와 세립분 함유량에 따라 크게 영향을 받는 것으로 나타났다. 이러한 원인으로 동결온도에 따른 부동수분의 차이일 것이라는 의견과 세립분 함유량 및 간극 내 얼음에 의해 사질토 입자들 이격거리 차이에 의한 것이라는 의견이 제시되었다. 제시된 두 가지 의견 중 사질토 입자들 이격거리의 확인을 위해 micro X-ray CT 촬영을 수행하였다. X-ray CT 촬영에 의한 비파괴 검사는 최근 지반공학 분야에서 진행되고 있는 다양한 융복합 연구 중 하나로 CT 촬영을 통하여 지반재료의 내부 구조를 마이크로미터 단위의 높은 해상도를 통해 평가할 수 있는 방법이다. 본 연구에서는 -5, -10, $-15^{\circ}C$의 동결온도에서 성형된 5, 10, 15%의 세립분을 포함하고 있는 동결 사질토 공시체에 대하여 micro X-ray CT 촬영을 수행하고 기존의 개발된 이미지 해석 기법을 적용하여 동결 사질토 내의 조립질 입자들의 최단거리 및 평균거리를 통하여 세립분 함유량 및 동결온도가 조립질 입자간의 거리에 미치는 영향을 파악하고자 하였다. X-ray CT 촬영 결과, 동결온도 및 세립분 함유량은 동결 사질토 내 입자간 거리에는 큰 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Andersland, O. B. and Ladanyi, B. (2004), "Frozen ground engineering second edition", John Wiley & Sons, New York, pp. 20-55.
  2. Anderson, D. M. and Morgenstern, N. R. (1973), "Physics, chemistry and mechanics of frozen ground", National Academy of Sciences, pp. 257-288.
  3. Bourbonnais, J. and Ladanyi, B. (1985), "The mechanical Behavior of Frozen Sand Down to Cryogenic Temperatures", Proceedings, 4th International Symposium of Ground Freezing, Sapporo, Japan, pp. 235-244.
  4. Bragg, R. A. and Andersland, O. B. (1982), "Strain rate, Temperature and Sample Size Effects on Compression and Tensile Properties of Frozen Sand", Developments in Geotechnical Engineering, Vol. 28, pp. 35-46.
  5. Chae, D., Hwang, B. and Cho, W. (2015), "Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents", Journal of Korean Geo-environmental Engineering, 16(6), pp. 31-38 (in Korean).
  6. Chung, S. Y., Kim, Y. J., Yun, T. S. and Jeon, H. K. (2011), Evaluation of void distribution on lightweight aggregate concrete using Micro CT image processing, Journal of Korean Society of Civil Engineering, Vol. 31, No. 2 A, pp. 121-127 (in Korean).
  7. Freitag, D. R. and McFadden, T. (1997), "Introduction to cold regions engineering", New York: ASCE Press, pp. 291-301.
  8. Haynes, F. D. and Karalius, J. A. (1977), "Effect of Temperature in the Strength of Frozen Silt", U.S. Army Cold Regions Research and Engineering Laboratory Research Report, 350, pp. 1-27.
  9. Hivon, E. G. and Sego, D. C. (1995), "Strength of frozen saline soils", Canadian Geotechnical Journal, Vol. 32, No. 2, pp. 336-354. https://doi.org/10.1139/t95-034
  10. Jeon, H. K. and Youm, K. S. (2011), Analysis of lightweight aggregate and lightweight aggregate concrete through the use of Micro CT technology, Journal of the Korea Institute of Building Construction, Vol. 11, No. 3. pp. 6-14 (in Korean).
  11. Jung, Y. J. and Yun T. S. (2011), Quantification of 3D pore structure in glass bead using Micro X-ray CT, Journal of the Korean geotechnical society, Vol. 27, No. 11, pp. 83-92 (in Korean). https://doi.org/10.7843/kgs.2011.27.11.083
  12. Kim, J. T., Takahashi, M., Choo, C. O., Ro, B. D. and Jeong, G. C. (2011), Comparison of X-ray CT analysis of rocks and low permeability, KSEG Conference, Jeju, Korea, pp. 170-172 (in Korean).
  13. Park, H., Choo, C. O. and Jeong, G. C. (2013), Micro focus X-ray and permeability characteristics of damaged rocks, proceedings of KSEG Spring Conference, pp. 113-115 (in Korean).
  14. Shin, H. S., Kim, K. Y., Heo, S. J., Yim, S. B., Kwon, Y. C. and Kim, H. T. (2011), Estimation of void ratio of sandy soil using X-ray CT scan, Journal of the Korean Geotechnical Society, Vol. 27, No. 1, pp. 170-172 (in Korean).
  15. Shin, K. H., Kim, S. K. and Lee, K. H. (2012), Evaluation of void distribution of hot mix asphalt using Micro CT scanner, Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 169-175 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.3.169
  16. Suh, H. S., Yeom, S., Yun, T. S., Kim, K. Y. and Seo Y. S. (2015), Evaluation of shape parameters by 3D X-ray CT and image processing, Korean Society of Civil Engineering Conference, pp. 35-36 (in Korean).
  17. Wolfe, L. H. and Thieme, J. O. (1964), "Physical and Thermal Properties of Frozen Soil and Ice", Society of Petroleum Engineering Journal, Vol. 4, No. 01, pp. 67-72. https://doi.org/10.2118/675-PA

Cited by

  1. Development of Urban Scale Action Procedure and Checklist for Road Sink Accident Restoration vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.49
  2. X-ray CT를 이용한 분무식 방수 멤브레인의 공극 내 물 침투 분석 vol.16, pp.4, 2017, https://doi.org/10.12814/jkgss.2017.16.4.211
  3. 중소형 필댐의 정밀점검 우선순위 도출을 위한 간이 위험도 분석 방법 vol.21, pp.10, 2017, https://doi.org/10.14481/jkges.2020.21.10.11