• Title/Summary/Keyword: 각막 상피세포

Search Result 25, Processing Time 0.042 seconds

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Susceptibility to FAS induced apoptosis in mycoplasma contaminated HCE cells (Mycoplasma가 오염된 배양 각막상피 세포의 FAS 유도 세포고사의 민감성)

  • Kim, Jai-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.79-86
    • /
    • 2007
  • The aim of the present study was to determine mechanisms of corneal epithelial cell apoptosis in vitro following exposure to anti-FAS and anti-FAS ligand antibody and during infection with mycoplasma sp.. A cultured human corneal epithelial(HCE) cell line was treated with anti-FAS antibody or anti-FAS ligand antibody for 2 and 4 days. The original cell line was found to be contaminated by mycoplasma removal agent(MRA) was used to eliminate the bacterium from the cell line. MRA($0.5{\mu}{\ell}$ tissue culture medium) was added to the cell line and incubated for 1 week. The cell line underwent multiple passages in media not contaminating MRA and cells were grown to 50-80% confluency on coverslips and stained using the Hoechst stain provided in the kit to ensure mycoplasma removal. Apoptosis experiments were performed before and after mycoplasma removal. The apoptotic index of anti-FAS and anti-FAS ligand antibody on mycoplasma contaminated cell line was studied using Hoechst 33342 staining and Annexin V-FITC and Propidium Iodide Staining. In conclusion, anti-FAS antibody induces apoptosis in HCE cells in a time and concentration-dependent mechanism. Cell lines contaminated with mycoplasma have an incresed susceptibility to FAS induced apoptosis.

  • PDF

Cytotoxicity of Multipurpose Contact Lens Solutions on the Cultured Corneal Epithelial Cells Evaluated by Image Analysis (이미지 분석법을 이용한 소프트 콘택트렌즈용 다목적용액의 각막상피세포 독성 평가)

  • Kim, Nam-Youl;Lee, Koon-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Purpose: To determine the effect of marketed multipurpose contact lens solutions (MPSs) on human corneal epithelial cells (HCEpiCs) toxicity by using image analysis. Methods: HCEpiCs were exposed six MPSs (product A-F) at 0.05~50% for 2h, 12h, 24h, and 48h respectively. HCEpiCs were fixed and stained with Draq5 after exposure with MPSs, and the cell viability and apoptosis were evaluated by using confocal microscope and ImageXpress UltraTM. Results: Viabilities of HCEpiCs exposed to MPS A-F for a 2h were not affected, while reductions (52~75%) in cell viability over a 12h exposure of MPS B, MPS C, MPS D and MPS F, and significant more reductions (29~73%) over a 24h and 48h-exposure. Apoptosis of HCEpiC was not affect over a 12h MPS exposure, however was significantly increased (199~526%) over 24h and 48h MPS exposure. Among the products MPS D, E and F reduced viability of HCEpiCs and apoptosis increased more than MPS A (p<0.05). Conclusions: Lower concentration of MPSs have not an cytotoxic effect on HCEpiCs, however higher concentration of MPSs induce apoptosis and reduce viability of HCEpiCs. Therefore, it need to develop MPS having antimicrobial effectiveness with low cytotoxicity.

Acute Cytotoxicity Testing of Polyhexamethylene-biguanide (PHMG) and Epigallocatechin-gallate (EGCG) Mixture on the Cultured Human Corneal Epithelial Cell (보존제 PHMB(polyhexamethylene biguanide)-EGCG(epigallocatechin gallate) 혼합물의 각막상피세포 급성독성 평가)

  • Kim, Nam-youl;Lee, Koon-Ja
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.531-541
    • /
    • 2018
  • Purpose : To evaluate the acute cytotoxic effect of polyhexamethylene biguanide (PHMB), epigallocatechin gallate (EGCG) and PHMB/EGCG mixture on the cultured human corneal epithelial cell (HCEpiC). Methods : HCEpiCs were cultured in the media of HCEpiC containing 0.00001~0.005% PHMB, 0.001~5% EGCG and 0.00005% PHMB/0.05% EGCG mixture respectively for 30, 60, 120 and 240 min. Cultured HCEpiCs were fixed and stained with Draq5 and cell viability and apoptosis were evaluated using confocal microscope and ImageXpress $Ultra^{TM}$. Results : Cultured HCEpiC did not show cytotoxic effect at below 0.00005% PHMB and below 0.05% EGCG concentration. In the media containing 0.00005% PHMB/0.05% EGCG, acute cytototoxic effect was not found, whereas damaged HCEpiCS were increased and survival cells were decreased in the media incubated for 240 min. Conclusion : The mixture of 0.00005% PHMB/0.05% EGCG showed non acute cytotoxic effect on the cultured HCEpiCs, however it is needed to investigate its chronic cytotoxic effect.

Apoptosis in Human Corneal Epithelial cells induced by Exhausted Medium (Exhausted Medium에 의한 각막상피 세포의 세포고사 유도)

  • Kim, Jae-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.83-87
    • /
    • 2000
  • To investigate exhausted-medium-induced apoptosis in human corneal epithelial(HCE) cells, this study was performed DNA gel electrophoresis, M30 CytoDEATH staining and FAS-FAS ligand ELISA. SV-40 transfected cells were grown to confluency in culture for 7days. The supernatant was harvested and filtered with $0.22{\mu}m$ filter paper. Fresh HCE cells were exposed to the filtered exhausted medium for 1~2 days. Apoptotic cells were prepared for DNA extraction and run the agarose gel for DNA ladder pattern. M30 CytoDEATH was used a tool for easy and reliable determination of very early apoptosis in HCE cells. The control and exhausted medium were assayed for soluble FAS/FAS ligand protein by ELISA. HCE cells exposed to exhausted medium showed a typical DNA ladder pattern. Sporadic M30 CytoDEATH positive cells were detected among HCE cells exposed to exhausted medium. Soluble FAS/FAS ligand levels were not elevated in the exhausted medium compared to the fresh medium control. This study suggests that possible mechanism of exhausted medium induced apoptosis does not include the FAS-FAS ligand system.

  • PDF

The Induction of Human Corneal Epithelial Apoptosis by Serum-free Medium (무 혈청배지에 의한 각막상피 세포의 세포고사)

  • Ra, Myung Suk;Kim, Jai-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • The corneal epithelium is constantly shed and apoptosis may play an important role in this turn-over. We sought to define that serum-free medium was able to induce apoptosis of corneal epithelial cells. SV-40 transfected human corneal epithelial(HCE) cells were grown to 70% confluency in culture. Serum-free medium was added to cells and the cells incubated for 1, 2, 3, or 6 days. Apoptosis of cells at different times was assessed by staining cells with Giemsa or Hoechst 33342 and measuring DNA fragmentation using the TUNEL assay. HCE cells exposed to serum-free medium demonstrated a high incidence of apoptosis, which increased over time to $50{\pm}4%$ after 3 days. They also stained positively with TUNEL assay. Serum-free medium caused time dependent apoptosis of HCE cells. Thus, serum-like nutrient might be important in corneal epithelial cell homeostasis.

  • PDF

Apoptotic response to various apoptotic inducers on cultured HCE cells (여러 가지 apoptosis 유도 물질의 각막 상피세포에 대한 apoptosis 유도 반응)

  • Kim, Jai-Min;Kim, Soon-Ae;Yoo, Geun-Chang;Seo, Eun-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • The corneal epithelium is constantly being shed. The mechanism of corneal desquamation is not fully understood. Apoptosis, programmed cell death, may play a role. Apoptosis can be induced by a number of factors and different mechanisms. The study was performed to examine the apoptotic index induced in human corneal epithelial cells maintained in tissue culture by various apoptotic inducers. Various inducers, recombinant human cytokines($INF{\gamma}$, $TNF{\alpha}$, FASAb), actinomycin D. camptothecin, cycloheximide, dexamethasone and etoposide, were purchased from commercial suppliers. Inducers at manufacturer-recommended concentration were added to the corneal epithelial cells for 48 hours. Cell viability was measured using MTT assay. The cells were then assessed for the level of apoptosis. Morphologic changes and quantification of apoptotic cells were determined and counted under fluorescence microscope after inducers-treated human corneal epithelial (HCE) cells for 48 hours with Hoechst 33342 staining. Annexin V-FITC/PI staining and DePsipher assay. The expression of Fas protein was studied by immunocytochemistry. All inducers induced apoptosis in HCE cells in a dose dependent manner. Actinomycin D. camptothecin and etoposide induced apoptosis at lower than manufacturer-recommended concentration, while cytokines, cycloheximide and dexamethasone induced apoptosis at higher concentrations at the end of 48 hours. All inducers elicited typical apoptotic morphologic changes (chromatin condensation, nucleus fragmentations non-orange-red colored mitochondria) and expresses Fas protein highly. Apoptotic index of HCE cells by these inducers was different from the other cell lines. RNA synthesis inhibitor and topoisomerase inhibitors induced apoptosis at lower concentration than manufacturer-recommended concentration. Cytokines, cycloheximide and dexamethasone were able to produce apoptosis at 10 times higher concentrations. RNA synthesis inhibitor and topoisomerase inhibitors are more sensitive than intracellular receptor-activators in apoptotic induction of HCE cells.

  • PDF

Photobiomodulation Mediated by Red and Infrared Light: A Study of Its Effectiveness on Corneal Epithelial Cells and Wound Healing (적색 및 적외선 빛을 이용한 Photobiomodulation: 각막상피세포에 대한 효과와 상처 치유에 관한 연구)

  • Sun Hee Ahn;Jae Sung Ahn;Byeongil Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • In this study, we have investigated the effect of photobiomodulation (PBM) on corneal wound healing, using a low-power light-emitting diode (LED) at different wavelengths. We found that LEDs with wavelengths ranging from 623 to 940 nm had no significant cytotoxic effects on corneal epithelial cells. The effect of PBM on promoting cell migration was analyzed by scratch assay, and it was found that PBM at 623 nm significantly increased cell migration and promoted wound healing. Furthermore, the expression of genes related to cell migration and wound healing was analyzed, and it was found that PBM at 623 nm upregulated the expression of the genes FGF-1 and MMP2, which are known to promote cell proliferation and extracellular matrix degradation. These findings suggest that PBM with low-powered light at specific wavelengths, particularly 623 nm, could be utilized to treat corneal injury.

Reconstruction of Rabbit Corneal Epithelium using Lyophilized Amniotic Membrane and Dynamic Culture Method (동결건조 양막과 동적배양법을 이용한 토끼 각막 상피층의 재구성)

  • Ahn, Jae-Il;Jang, In-Keun;Shin, Youn-Ho;Seo, Young-Kwon;Yoon, Hee-Hun;Yoon, Mun-Young;Kim, Jae-Chang;Song, Kye-Yong;Lee, Hee-Gu;Yang, Eun-Kyung;Kim, Ki-Ho;Park, Jung-Keug
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.305-310
    • /
    • 2005
  • Reconstruction of rabbit corneal epithelium was performed through dynamic culture method using self-manufactured amniotic membrane supporter and lyophilized amniotic membrane. Rabbit corneal epithelial cells were cultured and cryopreserved after isolation from limbus, and the cells could be proliferated by passage number 10. The basal layer was well formed, and the epithelium layer was constructed tightly by the increase of cell proliferation and differentiation by dynamic culture method than static culture. Thus, the reconstruction of the corneal epithelium using lyophilized amniotic membrane is considered to be a good in vitro model for transplantation of corneal epithelium to patients with a severely damaged cornea.

Effects of Benzalkonium Chloride on the growth and survival of Human corneal epithelial cells (점안액 보존제 성분 Benzalkonium Chloride에 의해 유도된 각막상피세포의 세포고사 유도)

  • Kim, Jai-Min;Lee, Seok-Ju;Seo, Eun-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • The aim of this study was to investigate the action of benzalkonium chloride (BAC) used as a preservative in most ophthalmic topical solutions, on human corneal epithelial (HCE) cells in vitro. HCE cell line was exposed to BAC solutions at various concentrations (0.01%~0.0001%) for 15 minutes followed by 24 hours of cell recovery. Cell viability was assessed using MTT assay and chromatin condensation with a Hoechst 33342 test. The expression of membrane protein Fas and Fas ligand was examined by western blot and immunocytochemistry, and DNA fragmentation was studied by agarose gel electrophoresis. A significant decrease of membrane integrity with chromatin condensation was observed with BAC tested at concentrations of 0.005% and higher. BAC was cytotoxic preservatives in this study. An apoptotic mechanism appeared to be present at low concentrations of BAC, whereas a necrotic process appeared at higher concentrations. A functional Fas-mediated apoptotic pathway is present in cultured HCE cells and can be activated by upregulation of Fas expression with BAC.

  • PDF