Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.9.712

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes  

Kim, Da Hye (Anti-Aging Research Center, Dong-eui University)
Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University)
Lee, Hyesook (Department of Convergence Medicine, Pusan National University School of Medicine)
Cheong, Jaehun (Department of Molecular Biology, Pusan National University)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.32, no.9, 2022 , pp. 712-720 More about this Journal
Abstract
The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.
Keywords
Heatmap analysis; inflammation; oxidative stress; particulate matter 2.5; primary rat corneal epithelial cells;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, H., Kim, W. H., Kim, Y. Y. and Park, H. Y. 2020. Air pollution and central nervous system disease: A review of the impact of fine particulate matter on neurological disorders. Front. Public Health 8, 575330.
2 Klopfer, J. 1989. Effects of environmental air pollution on the eye. J. Am. Optom. Assoc. 60, 773-778.
3 Kobayashi, T., Yoshioka, R., Shiraishi, A. and Ohashi, Y. 2009. New technique for culturing corneal epithelial cells of normal mice. Mol. Vis. 15, 1589-1593.
4 Zeng, Y., Li, M., Zou, T., Chen, X., Li, Q., Li, Y., Ge, L., Chen, S. and Xu, H. 2021. The impact of particulate matter (PM2.5) on human retinal development in hESC-derived retinal organoids. Front. Cell. Dev. Biol. 9, 607341.
5 Ma, X., Shimmura, S., Miyashita, H., Yoshida, S., Kubota, M., Kawakita, T. and Tsubota, K. 2009. Long-term culture and growth kinetics of murine corneal epithelial cells ex- panded from single corneas. Invest. Ophthalmol. Vis. Sci. 50, 2716-2721.   DOI
6 Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Park, C., Hong, S. H., Kim, G. Y., Song, K. S., Hyun, J. W. and Choi, Y. H. 2020. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human reti- nal pigment epithelial cells via generation of reactive oxy- gen species. Environ. Pollut. 262, 114301.
7 Lee, H., Kim, D. H., Kim, J. H., Park, S. K., Jeong, J. W., Kim, M. Y., Hong, S. H., Song, K. S., Kim, G. Y., Hyun, J. W. and Choi, Y. H. 2021. Urban aerosol partic- ulate matter promotes necrosis and autophagy via reactive oxygen species-mediated cellular disorders that are accom- panied by cell cycle arrest in retinal pigment epithelial cells. Antioxidants 10, 149.
8 Longhin, E., Camatini, M., Bersaas, A., Mantecca, P. and Mollerup, S. 2018. The role of SerpinB2 in human bron- chial epithelial cells responses to particulate matter expos- ure. Arch. Toxicol. 92, 2923-2933.   DOI
9 Magnani, N. D., Marchini, T., Calabro, V., Alvarez, S. and Evelson, P. 2020. Role of mitochondria in the redox signaling network and its outcomes in high impact inflammatory syndromes. Front. Endocrinol. (Lausanne) 11, 568305.
10 Lyu, D., Chen, Z., Almansoob, S., Chen, H., Ye, Y., Song, F., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, W., Yao, K. and Fu, Q. 2020. Transcriptomic profiling of human corneal epithelial cells exposed to airborne fine particulate matter (PM2.5). Ocul. Surf. 18: 554-564.   DOI
11 Ritz, B., Hoffmann, B. and Peters, A. 2019. The effects of fine dust, ozone, and nitrogen dioxide on health. Dtsch. Arztebl. Int. 51-52, 881-886.
12 Loomis, D., Huang, W. and Chen, G. 2014. The Internatio- nal Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin. J. Cancer 33, 189-196.   DOI
13 Baroody, F. M. 2011. How nasal function influences the eyes, ears, sinuses, and lungs. Proc. Am. Thorac. Soc. 8, 53-61.   DOI
14 Barrientez, B., Nicholas, S. E., Whelchel, A., Sharif, R., Hjortdal, J. and Karamichos, D. 2019. Corneal injury: Clinical and molecular aspects. Exp. Eye Res. 186, 107709.
15 Boovarahan, S. R. and Kurian, G. A. 2018. Mitochondrial dysfunction: A key player in the pathogenesis of car- diovascular diseases linked to air pollution. Rev. Environ. Health 33, 111-122.   DOI
16 Liu, K., Hua, S. and Song, L. 2022. PM2.5 exposure and asthma development: The key role of oxidative stress. Oxid. Med. Cell. Longev. 2022, 3618806.
17 Miao, Q., Xu, Y., Zhang, H., Xu, P. and Ye, J. 2019. Cigarette smoke induces ROS mediated autophagy impair- ment in human corneal epithelial cells. Environ. Pollut. 245, 389-397.   DOI
18 Nurden, A. T. and Pillois, X. 2018. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets 29, 98-101.   DOI
19 Sidney, L. E., McIntosh, O. D. and Hopkinson, A. 2015. Phenotypic change and induction of cytokeratin expression during in vitro culture of corneal stromal cells. Invest. Ophthalmol. Vis. Sci. 56, 7225-7235.   DOI
20 Xiang, P., He, R. W., Han, Y. H., Sun, H. J., Cui, X. Y. and Ma, L. Q. 2016. Mechanisms of housedust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction. Environ. Int. 89-90, 30-37.   DOI
21 Zhu, X., Ji, X., Shou, Y., Huang, Y., Hu, Y. and Wang, H. 2020. Recent advances in understanding the mecha- nisms of PM2.5-mediated neurodegenerative diseases. Toxi- col. Lett. 329, 31-37.   DOI
22 Hyun, S. W., Song, S. J., Park, B., Lee, T. G. and Kim, C. S. 2020. Toxicological effects of urban particulate matter on corneal and conjunctival epithelial cells. Toxicol. Res. 36, 311-318.   DOI
23 Fu, Q., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Lou, X., Chen, Z. and Yao, K. 2017. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ. Pollut. 227, 314-322.   DOI
24 Gao, Z. X., Song, X. L., Li, S. S., Lai, X. R., Yang, Y. L., Yang, G., Li, Z. J., Cui, Y. H. and Pan, H. W. 2016. Assessment of DNA damage and cell senescence in cor- neal epithelial cells exposed to airborne particulate matter (PM2.5) collected in Guangzhou, China. Invest. Ophthalmol. Vis. Sci. 57, 3093-3102.   DOI
25 Hyun, S. W., Kim, J., Park, B., Jo, K., Lee, T. G., Kim, J. S. and Kim, C. S. 2019. Apricot kernel extract and amygdalin inhibit urban particulate matter-induced kerato- conjunctivitis sicca. Molecules 24, 650.
26 Gil-Martins, E., Barbosa, D. J., Silva, V., Remiao, F. and Silva, R. 2020. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Phar- macol. Ther. 213, 107554.
27 Ji, S. Y., Lee, H., Hwangbo, H., Hong, S. H., Cha, H. J., Park, C., Kim, D. H., Kim, G. Y., Kim, S., Kim, H. S., Yoo, J. C. and Choi, Y. H. 2020. A Novel peptide oligom- er of bacitracin induces M1 macrophage polarization by facilitating Ca2+ influx. Nutrients 12, 1603.
28 Jung, S. J., Mehta, J. S. and Tong, L. 2018. Effects of environment pollution on the ocular surface. Ocul. Surf. 6, 198-205.   DOI
29 Kanegasaki, S. and Tsuchiya, T. 2021. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-pho- sphatase-1 activation. J. Cell. Biochem. 122, 1313-1325.   DOI
30 Matsuda, M., Bonatti, R., Marquezini, M. V., Garcia, M. L., Santos, U. P., Braga, A. L., Alves, M. R., Saldiva, P. H. and Monteiro, M. L. 2015. Lacrimal cytokines as- sessment in subjects exposed to different levels of ambient air pollution in a large metropolitan area. PLoS One 10, e0143131.
31 Mo, Z., Fu, Q., Lyu, D., Zhang, L., Qin, Z., Tang, Q., Yin, H., Xu, P., Wu, L., Wang, X., Lou, X., Chen, Z. and Yao, K. 2019. Impacts of air pollution on dry eye disease among sresidents in Hangzhou, China: A case-crossover study. Environ. Pollut. 246, 183-189.   DOI
32 Niu, L., Li, L., Xing, C., Luo, B., Hu, C., Song, M., Niu, J., Ruan, Y., Sun, X. and Lei, Y. 2021. Airborne partic- ulate matter (PM2.5) triggers cornea inflammation and pyroptosis via NLRP3 activation. Ecotoxicol. Environ. Saf. 207, 111306.
33 Saghazadeh, A. and Rezaei, N. 2022. Central inflammatory cytokines in tuberculous meningitis: A systematic review and meta-analysis. J. Interferon Cytokine Res. 42, 95-107.   DOI
34 Park, J. H., Troxel, A. B., Harvey, R. G. and Penning, T. M. 2006. Polycyclic aromatic hydrocarbon (PAH) o-qui- nones produced by the aldo-keto-reductases (AKRs) gen- erate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem. Res. Toxicol. 19, 719-728.   DOI
35 Quezada-Maldonado, E. M., Sanchez-Perez, Y., Chirino, Y. I. and Garcia-Cuellar, C. M. 2021. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. Environ. Pollut. 287, 117313.
36 Rohr, A. C. 2013. The health significance of gas- and particle-phase terpene oxidation products: A review. Environ. Int. 60, 145-162.   DOI
37 Tan, G., Li, J., Yang, Q., Wu, A., Qu, D. Y., Wang, Y., Ye, L., Bao, J. and Shao, Y. 2018. Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci. Rep. 81, 17828.
38 Valacchi, G., Magnani, N., Woodby, B., Ferreira, S. M. and Evelson, P. 2020. Particulate natter induces tissue oxInflammation: From mechanism to damage. Antioxid. Redox Signal. 33, 308-326.   DOI
39 Yoon, S., Han, S., Jeon, K. J. and Kwon, S. 2018. Effects of collected road dusts on cell viability, inflammatory re- sponse, and oxidative stress in cultured human corneal epithelial cells. Toxicol. Lett. 284, 152-160.   DOI