• Title/Summary/Keyword: 가우스 분포

Search Result 127, Processing Time 0.029 seconds

Enhancement of Image Reconstruction Using Region of Interest Method Based on Adaptive Threshold Value in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 적응 문턱치 기반의 관심영역 기법을 사용한 영상 복원의 개선)

  • Kim, Chang Il;Kim, Bong Seok;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.99-106
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging modality in which the internal resistivity distribution is reconstructed based on the injected currents and measured voltages inside a domain of interest. In this paper, an adaptive threshold value based region of interest (ROI) method is proposed to improve the spatial resolution of reconstructed images as well as to reduce the computational time of the inverse problem. Adaptive threshold value is calculated by INTERMODES method and ROI is determined from the domain based on this value. Moreover, the computational domain of image reconstruction is restricted within a ROI and iterative Gauss-Newton method is employed to estimate the resistivity distribution. To evaluate the performance of the proposed method, numerical experiments have been performed and the results are analyzed.

Performance Analysis of MFSK Signal using Reed-Solomon / Convolutional Concatenated Coding and MRC Diversity Techniques in m-distributed Fading Environment (m-분포 페이딩 환경에서 Reed-Solomon/컨벌루션 연접 부호화 기법과 MRC 다이버시티 기법을 함께 이용하는 MFSK 신호의 성능 해석)

  • 이희덕;강희조;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.10-19
    • /
    • 1994
  • The error rate equation of Reed-Solomon/Convoutional concatenated coded MFSK signal transmitted over m-distributed fading channel with Additive White Gaussian Noise (AWGN) and re- ceived with Maximal Ratio Combining (MRC) diversity has been derived. The bit error probability has been evaluated using the derived equation and shown n figures as a function of signal to noise ratio, fading index and the number of diversity branches. From the results obtained, we have shown that the bit error probability of MFSK signal is improved by using coding technique in fading environment. The concatenated coding technique is found to be very effective. When concatenated coding and MRC diversity reception techniques are used together in fading environ- ment, the improvement of error performance attains about 6.6 dB in terms of SNR as compared with that of employing only concatenated coding case.

  • PDF

Analysis of Subthreshold Characteristics for Double Gate MOSFET using Impact Factor based on Scaling Theory (스켈링이론에 가중치를 적용한 DGMOSFET의 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2015-2020
    • /
    • 2012
  • The subthreshold characteristics has been analyzed to investigate the effect of two gate in Double Gate MOSFET using impact factor based on scaling theory. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. The potential distribution was used to investigate the short channel effects such as threshold voltage roll-off, subthreshold swings and drain induced barrier lowering by varying impact factor for scaling factor. The impact factor of 0.1~1.0 for channel length and 1.0~2.0 for channel thickness are used to fit structural feature of DGMOSFET. The simulation result showed that the subthreshold swings are mostly effected by impact factor but are nearly constant for scaling factors. And threshold voltage roll-off and drain induced barrier lowering are also effected by both impact factor and scaling factor.

Comparison of Analysis Performance of Additive Noise Signals by Independent Component Analysis (독립성분분석법에 의한 잡음첨가신호의 분석성능비교)

  • Cho Yong-Hyun;Park Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2005
  • This paper presents the separation performance of the linearly mixed image signals with additive noises by using an independent component analyses(ICAs) of the fixed-point(FP) algorithm based on Newton and secant method, respectively. The Newton's FP-ICA uses the slope of objective function, and the secant's FP-ICA also uses the tangent line of objective function. The 2 kinds of ICA have been applied to the 2 dimensional 2-image with $512\times512$ pixels. Then Gaussian noise and Laplacian noise are added to the mixed images, respectively. The experimental results show that the Newton's FP-ICA has better the separation speed than secant FP-ICA and the secant's FP-ICA has also the better separation rate than Newton's FP-ICA. Especially, the Newton and secant method gives relatively larger improvement degree in separation speed and rate as the noise increases.

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

Tolerance analysis of Multi-Configurative Microscopic System for Inspecting the Wire-Bonding Status of Semiconductor Chips (반도체 와이어 본딩 검사용 다중배치 현미경 광학계에 대한 공차분석)

  • Ryu, Jae-Myung;Kim, Jae-Bum;Kang, Geon-Mo;Jung, Jin-Ho;Baek, Seung-Sun;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • We have analyzed various tolerances of the multi-configurative microscopic system for inspecting the wire-bonding of a reed frame by using the Gaussian bracket method and the equivalent lens method. The tolerances for the curvature and the thickness, which are axial symmetric tolerances, are given by varying the back focal length within a fecal depth under diffraction-limited conditions. Moreover, by using the trial and error method, the axial non-symmetric tolerances for decenter and tilt are established by assigning the 5% variation of MTF(modulation transfer function) at the spatial frequency of 50 lp/mm and at the field angle of 0.7 field. As the tolerances with the most probable distribution are distributed within the range of the decay rate of less than 5% independent of the probability distribution of tolerances, we can achieve completely the desired design performances of the multi-configurative microscopic system by using the various ranges of these tolerances.

MRC Diversity Reception Performance of DS/MPSK signal in Interference and m-distribution fading Environments (m-분포 페이딩과 간섭의 영향을 받는 DS/MPSK신호의 MRC 다이버시티 수신특성)

  • 강희조;고영혁;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.55-67
    • /
    • 1995
  • The error rate equations of MPSK and DS/MPSK radio signals transmitted through the m-distributed fading channel in Gaussian noise and tone interference environments have been derived. Using the derived equations, the error rate performance is evaluated and shown as functions of carrier-to-noise ratio, carrier-to-interference ratio, processing gain, fading index and the number of diversity branches. The derivation has been done for two cases. The first case assumes that only the signal is undergoing the influence of fading, and the second case assumes that both signal and interference are undergoing the influence of fading simultaneously. From the obtained results, we have known that the error performance of MPSK signal is improved by using diversity technique and direct sequence spread spectrum technique even in a fading environment. Also comparing the error rate performance of two cases, the latter is worse than the former.

  • PDF

Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2709-2714
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric double gate MOSFET. The asymmetric double gate MOSFET has the advantage that the factor to be able to control the current in the subthreshold region increases. The analytical potential distribution is derived from Poisson's equation to analyze the threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness. The Gaussian distribution function is used as charge distribution. This analytical potential distribution is used to derive off-current and subthreshold swing. By observing the results of threshold voltage and conduction path with parameters of bottom gate voltage, channel length and thickness, projected range and standard projected deviation, the threshold voltage greatly changed for the ratio of top and bottom gate oxide thickness. The threshold voltage changed for the ratio of channel length and thickness, not the absolute values of those, and it increased when conduction path moved toward top gate. The threshold voltage and conduction path changed more greatly for projected range than standard projected deviation.

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF