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A Study on Velocity—Log Conductivity, Velocity-Head Cross Covariances in
Aquifers with Nonstationary Conductivity Fields

d 2 A
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Abstract

In this study, random flow field in a nonstationary porous formation is characterized through
cross covariances of the velocity with the log conductivity and the head. The hydraulic head and
the velocity in saturated aquifers are found through stochastic analysis of a steady, two—dimensional
flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic
forms all in terms of the parameters which characterize the nonstationary conductivity field and the
average head gradient. The cross covariances with a Gaussian correlation function for the log
conductivity are presented for two particular cases where the trend is either parallel or perpendicular
to the mean head gradient and for separation distances along and across the mean flow direction.
The results may be of particular importance in transport predictions and conditioning on field
measurements when the log conductivity field is suspected to be nonstationary and also serve as a
benchmark for testing nonstationary numerical codes.
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1. Introduction

through
natural porous formations depends not only on
the subsurface flow conditions but also on the
hydrogeologic properties through which the flow

Movement of water and solute

occurs and it is common to find these properties
in earth materials highly variable. Stochastic
approach regards aquifer properties such as
hydraulic conductivity, K, and hydraulic head,
H, as (SRF)
characterized by probability distributions. Most
of the
assumption

spatial random functions
study is based on the
that the field is

stationary, ie., its spatial mean is a constant.

stochastic
conductivity

Although this assumption of stationarity greatly
simplifies the mathematical analysis and may be
applicable in many situations, it is by no means
universal and recent field studies (Woodbury
and Sudicky, 1991; Rehfeldt et al, 1992
LaVenue et al., 1995) support such a statement.

There have been theoretical studies such as
Loaiciga et al. (1993)
incorporated the nonstationarity of the log

who  systematically
conductivity field in the stochastic analysis of
subsurface flow and the problem of transport in
a nonstationary field was treated by Rubin and
Seong  (1994) they provided the
first-order solution of a linear conductivity field
with mean flow
perpendicular to the trend. A more general case
was studied by Indelmann and Rubin (1996)
when they obtained the equivalent conductivity
tensor for a general orientation of the mean

where

either parallel to or

flow vector.

The purpose of this study is to further
explore the phenomena of subsurface flow by
studying the spatial structure of the
heterogeneous random velocity field through
cross covariances of the velocity, U, with the
Y=InK, and the hydraulic
head, H. An exact solution of the velocity field

log conductivity,

would require a complete description of Y and
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H, which is impossible for a heterogeneous
porous medium. A more practical method would
be to solve for the statistical moments of the
velocity fluctuation and these are reported in
Rubin and Seong (1994).

In this paper we will further explore the
coregionalized fields by obtaining expressions of
the velocity cross covariances with Y and H.
(The Y—H cross covariance was obtained by
Seong (1996).) These cross covariances can be
of particular importance in modeling transport
problems. Rubin (1991) outlined a procedure for
predictions on the
which
requires velocity cross covariances. Furthermore,
since the final results will be of quasi-analytic
form requiring only quadratures, these may
serve as a useful benchmark in testing of
numerical codes that can handle

conditioning  transport

velocity, head and log conductivity,

flow and
transport problems in nonstationary conductivity
fields.

2. Mathematical Statement of the Problem

We will restrict our analysis to a steady,

two-dimensional groundwater flow in a

saturated aquifer lying horizontally without
recharge and to simplify calculations we will

adopt a first-order analysis.
Flux, ¢, and the hydraulic head, H, follow

the continuity equation and the Darcy’s law:

v g{x)=0 (1a)
q(x)=—K(x) VH(x) (1b)
where x is the space coordinate. Here and

subsequently boldface letters denote vectors.
Following field studies (Hoeksema and Kitanidis,
1985) as well as works summarized by Gelhar

(1993), the log conductivity, Y{(x), is treated

as a lognormal SRF.
In order to investigate the effects of
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nonstationarity, Y is assumed to be comprised
of a spatially varying mean and a small-scale
local fluctuation and in this study we assume
that the expected value of Y

function of space coordinate:

is a linear

I

Y(x) (Y(x)>+ Y (x)

@)

=my+a-x+Y'(x)

where m; and a are constants and

Y'=0l[oyl, where oy 1is the standard

deviation of Y. Here and subsequently, angle
brackets denote expected value operators and
O[ ] represents the customary Landau order
(1973)). The local

is stationary, ie., has a zero

symbol (see Nayfeh
fluctuation Y’
mean and a covariance Cy that depends only

on the separation vector:

Y ()Y (y)>

Il

Cy(x, y)
3

I

Cy(rh=cfoy(l 7))

where r=x—y, 03 the variance and py is
the correlation function of Y.

Eliminating ¢ from Egn. (1) and combining
Eqgn. (2) result in the following stochastic PDE:

VIH(x)+ a- VH(x)= —Vv YV - VH(x) @)

For the boundary condition we assume that the
head gradient at some point ¢ in the flow
domain is given as

(VH(E)> = —J =(—=]5,0),

our coordinate be set up such that x,-axis is

implying that

aligned with the mean flow direction. To
simplify calculations we limit our analysis to
two particular cases: the case of a parallel to
J and the case where @ is orthogonal to J.

With our coordinate system set up as explained
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earlier, the former case results in a=(a;,0)
which we will refer to as the a;—case and the
latter a@=(0,a;) which will be referred to as

the a,-case.

When the head is expressed as the sum of a
mean and a local fluctuation as H = {H> + h,
where % = O[oy], Eqn. (4) leads to a set of

equations of O[1] for <H> and of O[oy] for
h:

VHHY+a-v<H) =0 (5a)
Vit a-Vh=—-vY - V<H> (5b)

Solutions to the above set of equations have
been obtained by Rubin and Seong (1994) for
two particular cases mentioned above.

The U=<U>+wu, is

flow  velocity,

related to the flux, ¢, by U= ¢/n where =

is the effective porosity taken to be constant.
Using Eqns. (1b) and (2), the mean and the
fluctuation are found as the following:

Mo

<U>=—%1~e”v<H> (62)

my

u=—E— " (Vht Y VCHY)  (6b)

Using above results of first order solutions, we
pursue derivation of various cross covariances
of the velocity:

Cuy=<u; ()Y (9)> (7a)

Cun = u; (x)k(y)> (7b)
for =1 and 2, denoting different directions of
a cartesian coordinate system. Here we choose

to use the spectral method in deriving the
statistical moments of Eqn. (7) and a brief note
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regarding Fourier transforms is given in the
appendix

3. Velocity-Log Conductivity Cross
Covariance

3.1 The a;—case : a= (a;,0)

When a@,=0, the mean head gradient from
Eqn. (5a) can be found as
CH(x)>/dx;i = — ]y eial(x"méil, where §

is the Kronecker delta, and hence Eqn. (5b)

reduces to:

3h —a(x =) 3Y'

2 —
vh+ a; axl = ]0@ axl (8)

from which the Fourier transformed solution of

h is found as:

ikl—aq

k2+ ialkl ?(k1+ ial,kz)(Q)

@(k) — ]0e41§1

where i is the imaginary unit and
k= (k, k) is the wave number vector in
Fourier space. Using above results and Eqn.
6b) for a@;=0, the Fourier transform of «;

can be found as:

w(k) = f(k)Y (k) (10)

where f(k) = B/ (= iak) and
(k)= —kiky /(K — iak). The K is the
modulus of the wave number vector and u;
has been non-dimensionalized with a reference
velocity of em"”‘:‘fo/n.

velocity -log
Cu,Y(x, ¥) by

taking the inverse Fourier transform:

We <can now derive the

conductivity cross covariance

Cour(z ) =C o= [ W(kye ™ ™* *dk

1
2T

an
f?’(k’)e‘”""dw

and when Eqn. (10) and the correlation function
of Eqn. (3) is used, Eqn. (11) reduces to the
following:

Curlz, 3’)=%f?Jy(k)fi(—k)e“”'”"’)dk

12)

Integrations regarding Fourier transforms are
performed over the entire 2-dimensional plane.
It can be seen that the velocity-log conductivity
of a;-case is stationary, i.e., it only depends on

the separation distance as
Cuv(z, y)=C,y0, y—x).

32 The a,-case : a = (0,a;)

When a;=0, the mean head gradient from

Eqn. (5a) can be found as
ICH(x)>/0x; = =8,y and  hence the
velocity fluctuation of Egn. (6b) can be

expressed as:
u;, = eaﬂz(Y’(‘)‘il_T};%) (13)

which again has been non-dimensionalized with
e™J,/n. Thus the

velocity-log conductivity cross covariance can
be expressed as:

a reference velocity of

Cour(x,9) = ™ (8,CY (DY (9,

1, dnx ,
Iy ()

As for the head fluctuation, Eqn. (5b) reduces
to

BEKRRPEHLE



Vi + a4yt gh =7 %i

15

from which the Fourler transformed solution is
found as:

ik

jom Y (& (16)

(k) =

Thus the derivative term in Eqn. (14) can be
expressed in terms of its Fourler transform as

the following:
ah _______ —ik-x
ax, ax, o7 f"(k)e dk an
f k2+ 1ak Vike " dk

and when used in Eqn. (14), C,y(x, ¥) can

finally be obtained as:

wr 0% [ ~
Cuy (x,3) = ™75 | oy(k)
2 ) (18)
_ kik; —ik-(y—2)
611 kz_ iazkz )e ak
Unlike the @;-case, C,y is nonstationary

depending not only on the separation vector but

azxz

also on the location as expressed in e
However applications can be simplified by

noting that C,y(x, ¥)=e""C,y(0, y—x).

(Rubin

and Seong, 1994) and both can be explained by
the fact that flow situation in the a;-case is

Similar results were observed for w;;

dominated by the shearing action at higher
conductivity region as x, increases.

4. Velocity—-Head Cross Covariance

41 The a,-case : a= (a;,0)

When a@,=(0 the mean head gradient is

314 B4 19984 8A

ACH(x)> dx; = —Jy e " %s

from Eqn. (6b) is:

a and  u;

4
e eam_a_hl)

u;=0oy(Y'0,— 7

(19

where the head fluctuation was found as the
following (Rubin and Seong, 1994):

h(x) zjoeaxfle_alxl/z

f 81:;3/{122 e‘“lYl/ZG(x_ y)dy

(20)

Here G is the Green’s function of the modified
Helmholtz equation. (see Arfken, 1985) Therefore
we can express the head fluctuation derivative

in terms of Y’ as:

3h§x} :]eal:le_alxl/Zf 3Y§ 22 —ay/2
ox; 7 o1 (1)
ng—__ﬁ — 8o G(x— y)]a’y

Having obtained the necessary variables in

terms of Y', we can derive the cross

covariance C,u(x, ¥) = Cu;(x) 1 ¥)) as:

8aC vz, ) — e ™™ " I(x, y)
(22)

Cu,H(xy )’)=

where the integral I is

ofy—2) o antan
1=[ [0 3y:92;

(L= 5, % Gl |Gl dyaz

(23)

and Cyy was found by Seong (1996). After

much tedious calculation including integration by
parts and using the convolution theorem, the
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velocity-head cross covariance for the a;-case

is found as the following:

s O
_ oy VY
Cu.H(x, y) =e I 24)
[ vk a(Re O Pak
where g, = ikB/(F+a k), g =— ikk,/
(F'+aiF) and ¥ in g; is the square of the
E=(k+ k)%

Unlike C,y of the previous section, it is seen

wave number modulus, ie.,

that the @a;-case C,p is nonstationary
decaying exponentially as the log conductivity

increases in y; —direction. This stems from the

exponential decay in the head fluctuation with a
positive ax; as seen in Eqn. (20). However
applications can again be simplified when we
take advantage of the

cu,H(x» y): eAalxl Cu,H(Oy y—x)

relationship

42 The a,-case : a= (0, a;)

Using the velocity fluctuation for the case of

@, =0 previously found (Egn. (13)), the cross

covariance can be expressed as:
Cu,H = eazxz(8i1<yr(x)h(y)> (25)

_ 1, dh(x)
]0< o y)>)

The first term in Eqn. (25) was found by
Seong (1996) as:

Y () h(y)> =

il i ik
2r k2+ idzkg

(26)

oy(ke ™ * 0" Vdk

and the second term can be found using Eqn.

(17) and the inverse Fourier transform of % (k)
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expressed in Eqn. (16). When these are used in
Eqn. (25), final expression for the velocity—head
Cross covariance becomes:

Cunlx, y>=e‘“’“% Joth

8 nlaskiks+ ikik?) — 1k
k+ odk

27

e~ ik~(y*x)dk

This is also nonstationary which again is due
to exponential decay of head fluctuation similar
to the @« -case as found by Rubin and Seong

(1994) and
relationship of C, yz(x, W =e“"C, (0, y—x).

it also satisfies the simplifying

5. Results and Discussions for a
Gaussian Covariance

To study the effects of a linear trend in the
velocity
two—dimensional

log  conductivity on the Cross

covariances, a Gaussian

correlation function will be used :

py(r)=exp[—§] soally=2Nr7 (28

where Iy is the log conductivity integral scale.

We will concentrate on the cross covariances
along separation distances in the mean flow
direction, along x;-axis, and one perpendicular
to it, along xy-axis. Furthermore when the
covariances dre nonstationary, only separation
distances between the origin will be presented
and more general cases can be obtained through
the simple relationships previously found.

The physical plausibility of the four velocity
cross covariances was confirmed numerically by
checking the divergence free condition through
control volume analysis with several different
In this
analysis, a unit deterministic perturbation of Y

control volume shapes and sizes.

or H is introduced at a given point and the
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resulting velocity excitations are computed using
the cross covariances and integrated over the
control surface. For example, when a unit
deterministic perturbation in Y is introduced at

the origin C, y represents the deviation in the

velocity components. Therefore, C,v along

x1=L,/2 would be the deviation in w, along
the right surface and C,y along x,=L,/2
the deviation in %, along the upper surface of
L,

centered at the origin. Hence it is possible to

a rectangular control volume of L, by

check if these velocities satisfy the continuity
equation. Control volumes of various shapes and
sizes were evaluated successfully with both

C,y and C,n within numerical error bounds.

0.6 T T

0.4+~

Cu1Y

CUW

5.1 Velocity-Log Conductivity Cross Covariance

Cross covariances with a Gaussian o, along
x; and x,-axis are obtained through numerical

(12) and (18)
given in Figs. 1 and 2. It is clear that C wy 1S

quadratures of Eqgns. and are

anisotropic and our model successfully depicts
the symmetric profile of C, y of the stationary

model
C..v is positive along all of x,-axis (see
Figs. 1(a) and 1(c)), whereas it is positive near

the origin becoming negative for large distances
along x,-axis for both @, and a@,-cases (see

Figs. 1(h) and 1(d)). This general structure can
be explained as follows. Larger value in the

(d)

(@) 2, —case along x,-axis, (b) a;—case along x,-axis
(c) @;-case along x,-axis, (d) @,—case along x,-axis.
Fig. 1. Velocity-Log Conductivity Cross Covariances Cuv

H314 B4 19984 8H
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(a) 2, —case along x;-axis
{b) a;—case along x, -axis.
Fig. 2. Velocity-Log Conductivity Cross
Covariances C .,y

conductivity leads to an increase in the local
velocity diminishing with distance.
normal to the mean flow, ie.

However,
along x5
~direction, a positive deviation in the near
vicinity has to be counterbalanced by a negative
velocity deviation to satisfy continuity.

C,v of @ —case along x -axis (Fig. 1(a))
becomes skewed as a; increases since same

amount of deviation in the lower conductivity
region has greater effect on the velocity than in
a region of higher conductivity. Same can be
said regarding C,y of a;-case along xy

—axis (Fig. 1(d)). Finally we see that C,y of
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@, -case along x;-direction (Fig. 1(b)) and
C.y of ay-case along x -direction (Fig.
1(c)) remain symmetric as can be expected from

geometry of the Y field.

As to C,y, which are zero along both axis
for a stationary field, they are nonzero along x
-axis for a;-case (Fig. 2(a)) and along x;
—axis for a,-case (Fig. 2(b)). Deviations in the

normal flow component are antisymmetric and
much smaller than those of the mean flow
component.

5.2 Velocity-Head Cross Covariance

Cross covariances with a Gaussian oy along
x, and x,-axis are obtained through numerical

quadratures of Eqgns. (24) and (27) and are
given in Figs. 3 and 4 The
C,y are that they are

general
characteristics  of

anisotropic and antisymmetric except for C, g
along x; -axis for a;—case as seen in Fig. 3(a).
This is due to an exponential decay of the head
fluctuation with a positive a;x; or exponential
(see Eqn.
(21)). The antisymmetry is equivalent to stating
that a velocity deviation resulting from a

positive head fluctuation upstream is same as
one resulting from a negative head fluctuation

amplification with a negative ax;

downstream. C,y along x;-axis and C,u
along x,-axis are identically zero for both @
and a@,-cases, which means that u; along x;
and u, along x,-axis are not sensitive to
head fluctuations.

From these results, we can observe not only
the quantitative effects of the log conductivity
trend on the velocity cross covariances but also
different qualitative characteristics compared to
conductivity field is

the case where the

stationary.
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(@) @, —case along x,-axis
(b) @, —case along x,-axis.

Fig. 3. Velocity-Head Cross Covariances
CulH

6. Summary

In this paper, we derived expressions of the

velocity—head
two-dimensional
heterogeneous nonstationary conductivity field.

velocity-log  conductivity and

Ccross covariances in  a
Final expressions are quasi-analytic requiring
only quadratures and expressed in terms of the
parameters that characterize the conductivity
trend and the mean head gradient.

The velocity cross covariances were developed
through a linearization of the flow equation
followed by a perturbation-like expansion up to
order. Results are presented using a
function for the Ilog

first

Gaussian correlation

B34 A 1998%F 8A

(b)

(a) @, —case along x,-axis
(b) 2, —case along x,—axis.

Fig. 4. Velocity-Head Cross Covariances
C uy H

conductivity and for two particular cases of the
trend and for separation distances along x; and
X5 —axis.

Investigation of the cross covariances result
in the following findings.
(1) All results reveal an anisotropic structure.
(2) C, y(a1;0,x) and
symmetric.
3 Cyy(e;0,23) and

nonzero and antisymmetric.

C.v(a;0,x) are

C.,v(ayx,,0) are

(4) C,,zlaz; x,,0) are antisymmetric.
(5) C,uley, a2;0,x;) are nonzero and anti-

symmetric.
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Appendix

Here we present a brief summary concerning
the use of the Fourier transform method. A
more complete treatment can be found in such
(1966) for a general
(1989)  for
applications regarding random functions.

books as Carrier et al

treatise and Dagan specific

The Fourier integral transform of a space

function f(x) and its inverse are defined by:

FT[/(x)] =7(k)

- (2%
f(x)=Wfif(k)e”ik"dk (29b)

where m is the number of space dimensions,
x and k& are the coordinate and wave number
vectors of m~-dimensions. The definition in Eqn.
(29) may not be suitable for some of the
functions which appear in stochastic processes
and this restriction can be surmounted if we
use the extended Fourier transform that includes
the following relationship regarding the Dirac
delta function, ¢

[Tetraz=[" o rax=(2m)"8(RG0)

Also used in the analysis are following useful
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relationships of the Fourier transform for the
gradients
convolution theorem :

and products as well as the

FTIVA0)] = — i k7 (k) (31a)
FT[f(%) fo x)]=
(31b)
g | R k) (k= k) dky
FTL [ Ax) film + x3) dx, ) 310)

=0Q20" [ (k)7 (k)

where ?1* is the complex conjugate of ;. And

finally, the Fourier transform of a 2-point
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statistical moment of the stationary functions f;

and f, is given by :
FT[<A(x)A(x)>] = CA(R) (k) > (32)

and, since this moment is invariant under

translation in space, it is a function of the
distance vector » = x3— x; and we have the

following relationship.

CHCR) FoCRp)>= 2™ 5 ky + k) C( ky) (33)

is the Fourier transform of the

covariance function, C(7) = <{fi(xy) fo{x2)) .

where C

(=¥ 3.:98-005/4 7:98.01.22/4 A} & §.:98.05.14)
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