• Title/Summary/Keyword: 가스 분리 막

Search Result 200, Processing Time 0.025 seconds

Analysis of a Hydrogen Generation Membrane Reactor (수소 생산용 막반응기의 해석)

  • Kim Hyung Gyu;Suh Jung Chul;Baek Young Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.16-23
    • /
    • 2004
  • A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.

  • PDF

Research Trend and Prospect of Membranes for Water Electrolysis (수전해용 분리막 연구 동향 및 전망)

  • Lee, Jae Hun;Cho, Won Chul;Kim, ChangHee
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.4
    • /
    • pp.1-21
    • /
    • 2021
  • 화석연료의 과도한 사용으로 유발된 기후변화 문제를 해결하기 위해 대체에너지의 개발에 대한 관심이 높아지고 있는 가운데 재생가능하며 친환경적인 수소에너지가 실현가능한 궁극적 대안으로 주목받고 있다. 다양한 수소 생산 기술 중 물의 전기분해를 이용한 수전해 기술은 온실가스와 같은 오염물질을 배출하지 않으며 재생에너지와 연계하여 미이용 전력을 대용량 장주기로 저장할 수 있다는 장점이 있다. 수전해 장치는 수소와 산소를 발생하는 전극과 기체의 섞임을 방지하고 이온을 전달하는 분리막으로 구성되며 그 중 분리막은 수전해 장치의 효율과 안정성을 결정짓는 핵심 부품이다. 본 총설에서는 수전해 기술 중 저온 수전해에 해당하는 알칼라인 수전해(alkaline water electrolysis), 고분자전해질막 수전해(polymer electrolyte membrane water electrolysis)와 음이온교환막 수전해(anion exchange membrane water electrolysis)에 사용되는 분리막에 대한 특성을 분석하고 최근 연구 동향에 대해서 다루고자 한다.

Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation (Polysilfone 막의 제조에 있어 제막용액에 첨가된 비용매의 영향)

  • 한명진
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • Polysulfone(PS) membranes were prepared from homogeneous PS solutions by the phase inversion technique. When propionic acid(PA) was added into a casting solution of n-methylpyrrolidone(NMP) and PS, precipitation rate of the solution film was accelerated. This kind of acceleration was consistent, even though a precipitating nonsolvent was changed from water to isopropanol. These phenomena were caused by decrease of nonsolvent tolerance in the casting solution due to addition of PA. PS powder was prepared by precipitation of a 3wt% solution in dimethylformamide(DMF) using ethanol as nonsolvent. Gas adsorption analysis of the powder showed that the capillary condensation sites were found in the powder structure. Membranes prepared from PS solution(15wt%) in NMP had the following characteristics of gas adsorption and water permeation. In gas adsorption analysis, the membrane precipitated using isopropanol showed low uptake of nitrogen gas and the capillary condensation sites were not found. On the contrary, a significant amount of the capillary condensation sites was found in the membrane coagulated by water, which was related to increase of nitrogen uptake. tn the membrane prepared froin the solution including PA, an increase of the Henry's law sites and the Langmuir sites was not found clearly. However, the capillary condensation sites were significantly increased, and the water transport also increased.

  • PDF

Separation and Recovery of F-gases (불화 온실 가스 저감 및 분리회수 기술의 연구개발 동향)

  • Nam, Seung-Eun;Park, Ahrumi;Park, You-In
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.189-203
    • /
    • 2013
  • F-gases, gases containing fluorine such as perfluorocarbons (PFCs), sulfurhexafluoride ($SF_6$), nitrogen trifluoride ($NF_3$) are known to have green house effects. Although the net emission rates of gases containing fluorine are much lower than those of $CO_2$, their contribution to global warming cannot be ignored because of their extremely high global warming potential (GWP). F-gases mainly have been used for a variaty of applications in the semiconductor/LCD processes and in the electric power distribution industry of the national key industry. One of practical solutions of controlling the emission rates of F-gases is to reuse by separation and recovery of F-gases of low concentration from the gases mixtures with nitrogen or air. This work investigates some methods for F-gases recovery and separation around the membrane-based process.

Technological Trends in Polymer Gas Separation Membrane for Carbon Neutrality (탄소중립을 위한 고분자 기체분리막의 기술 동향)

  • Khalid Muhammad Tayyab;Chul Ho Park
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.172-181
    • /
    • 2024
  • Many countries have passed laws to achieve Nationally Determined Contribution (NDC) which is a climate action plan to reduce greenhouse gas emissions and adapt to climate impacts. Although there are various technologies to achieve NDC targets, membrane technologies pose dramatical attractions for the purification of gaseous greenhouse gases or energy sources. Therefore, this review will provide the technological trends of polymeric membranes among various materials due to the advantages of the feasible fabrication process and easy scale-up.

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance (마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구)

  • Ji Min Kwon;Hye Jeong Son;Jin Uk Kim;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.362-368
    • /
    • 2023
  • This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry (전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Han, Sang Hoon;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.