DOI QR코드

DOI QR Code

α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support

  • 한성우 (동국대학교 화공생물공학과) ;
  • 신민창 (동국대학교 화공생물공학과) ;
  • 장학룡 (동국대학교 화공생물공학과) ;
  • 황재연 (동국대학교 화공생물공학과) ;
  • 고민영 (동국대학교 화공생물공학과) ;
  • 김시은 (동국대학교 화공생물공학과) ;
  • 정창훈 ((주)하이젠에너지) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Sung Woo Han (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Min Chang Shin (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Xuelong Zhuang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jae Yeon Hwang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Min Young Ko (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Si Eun Kim (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Chang Hoon Jung (Hygenenergy Co., Ltd.) ;
  • Jung Hoon Park (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 투고 : 2023.12.21
  • 심사 : 2023.12.28
  • 발행 : 2024.02.29

초록

본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500℃의 조건에서 18 h 동안 열처리를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 ㎛, Pd-Ag-Cu 분리막의 두께는 3.54 ㎛로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450℃, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450℃, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450℃, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.

In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 대기환경 괸리기술 사업화 연계 기술개발사업의 지원을 받아 연구되었습니다.(과제번호: RE202103386, 과제명: 블루 수소충전소용 수소 정제분리 시스템 실증 기술개발-Technology development of hydrogen purification membrane separation demonstration for blue hydrogen station)

참고문헌

  1. H. Wang and Z. Lei, "Energy supply from oil and gas, mineral depletion, and total natural resource rents: Impact of oil equivalent energy use CO2 intensity", Resour. Policy., 86, 104172 (2023). 
  2. E. Hittinger and I. M .L. Azevedo, "Estimating the quantity of wind and solar required to displace storage-induced emissions", Environ. Sci. Technol., 51, 12988-12997 (2017).  https://doi.org/10.1021/acs.est.7b03286
  3. Z. Chi, J. J. Asher, M. R. Jennings, E. Chikoidze, and A. Perez-Tomas, "Ga2O3 and related ultra-wide bandgap power semiconductor oxides: New energy electronics solutions for CO2 emission mitigation", Materials, 15, 1164 (2022). 
  4. T. Setoyama, T. Takewaki, K. Domen, and T. Tatsumi, "The challenges of solar hydrogen in chemical industry: How to provide, and how to apply?", Faraday Discuss., 198, 509-527 (2017).  https://doi.org/10.1039/C6FD00196C
  5. J. M. Thomas, P. P. Edwards, P. J. Dobson, and G. P. Owen, "Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells", J. Energy Chem., 51, 405-415 (2020).  https://doi.org/10.1016/j.jechem.2020.03.087
  6. I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, "The role of hydrogen and fuel cells in the global energy system", Energy Environ. Sci., 12, 463-491 (2019).  https://doi.org/10.1039/C8EE01157E
  7. A. Murugan and A. S. Brown, "Review of purity analysis methods for performing quality assurance of fuel cell hydrogen", Int. J. Hydrog. Energy., 40, 4219-4233 (2015).  https://doi.org/10.1016/j.ijhydene.2015.01.041
  8. S. Foresti1 and G. Manzolini, "Optimization of PEM fuel cell operation with high-purity hydrogen produced by a membrane reactor", Fuel Cells, 18, 335-346 (2018).  https://doi.org/10.1002/fuce.201700119
  9. O. Hatlevik, S. K. Gade, M. K. Keeling, P. M. Thoen, A. P. Davidson, and J. D. Way, "Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance", Sep. Purif. Technol., 73, 59-64 (2010).  https://doi.org/10.1016/j.seppur.2009.10.020
  10. S. Yun and S. Ted Oyama, "Correlations in palladium membranes for hydrogen separation: A review", J. Membr. Sci., 375, 28-45 (2011).  https://doi.org/10.1016/j.memsci.2011.03.057
  11. T. B. Flanagan and W. A. Oates, "The palladium-hydrogen system", Annu. Rev. Mater. Sci., 21, 269-304 (1991).  https://doi.org/10.1146/annurev.ms.21.080191.001413
  12. K. Zhang and J. D. Way, "Palladium-copper membranes for hydrogen separation", Sep. Purif. Technol., 186, 39-44 (2017).  https://doi.org/10.1016/j.seppur.2017.05.039
  13. V. Jayaraman and Y. S. Lin, "Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes", J. Membr. Sci., 104, 251-262 (1995).  https://doi.org/10.1016/0376-7388(95)00040-J
  14. F. Roa, J. D. Way, R. L. McCormick, and S. N. Paglieri, "Preparation and characterization of Pd-Cu composite membranes for hydrogen separation", Chem. Eng. J., 93, 11-22 (2003).  https://doi.org/10.1016/S1385-8947(02)00106-7
  15. X Zhuang, M. C. Shin, B. J. Jeong, J. Y. Hwang, Y. C. Choi, and J. H. Park, "Desalination and lignin concentration in a lignin aqueous solution by nano-filtration process: Advanced γ-Al2O3 film-coated porous α-Al2O3 hollow fiber membrane", Korean J. Chem. Eng., 39, 1588-1596 (2022).  https://doi.org/10.1007/s11814-022-1089-0
  16. X Zhuang, E. Magnone, M. C. Shin, J. I. Lee, J. Y. Hwang. Y. C. Choi, and J. H. Park, "Novel TiO2/GO-Al2O3 hollow fiber nanofiltration membrane for desalination and lignin recovery", Membranes, 12, 950 (2022).