Research Trend and Prospect of Membranes for Water Electrolysis

수전해용 분리막 연구 동향 및 전망

  • Lee, Jae Hun (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Cho, Won Chul (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Kim, ChangHee (Hydrogen Research Department, Korea Institute of Energy Research)
  • 이재훈 (한국에너지기술연구원 수소연구단) ;
  • 조원철 (한국에너지기술연구원 수소연구단) ;
  • 김창희 (한국에너지기술연구원 수소연구단)
  • Published : 2021.08.31

Abstract

화석연료의 과도한 사용으로 유발된 기후변화 문제를 해결하기 위해 대체에너지의 개발에 대한 관심이 높아지고 있는 가운데 재생가능하며 친환경적인 수소에너지가 실현가능한 궁극적 대안으로 주목받고 있다. 다양한 수소 생산 기술 중 물의 전기분해를 이용한 수전해 기술은 온실가스와 같은 오염물질을 배출하지 않으며 재생에너지와 연계하여 미이용 전력을 대용량 장주기로 저장할 수 있다는 장점이 있다. 수전해 장치는 수소와 산소를 발생하는 전극과 기체의 섞임을 방지하고 이온을 전달하는 분리막으로 구성되며 그 중 분리막은 수전해 장치의 효율과 안정성을 결정짓는 핵심 부품이다. 본 총설에서는 수전해 기술 중 저온 수전해에 해당하는 알칼라인 수전해(alkaline water electrolysis), 고분자전해질막 수전해(polymer electrolyte membrane water electrolysis)와 음이온교환막 수전해(anion exchange membrane water electrolysis)에 사용되는 분리막에 대한 특성을 분석하고 최근 연구 동향에 대해서 다루고자 한다.

Keywords

Acknowledgement

본 총설은 2019년도 정부(과학기술정통부)의 재원으로 한국연구재단의 원천기술개발사업의 지원을 받아 수행된 연구임(2019M3E6A106402013), 또한 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원(KETEP)의 신재생에너지기술개발사업의 지원을 받아 수행한 연구과제(20203030040030)이다.

References

  1. M. Thema, F. Bauer, and M. Sterner, Power-to-Gas: Electrolysis and methanation status review, Renew. Sustain. Energy Rev., 112, 775-787 (2019). https://doi.org/10.1016/j.rser.2019.06.030
  2. D. Parra, X. Zhang, C. Bauer, and M.K. Patel, An integrated techno-economic and life cycle environmental assessment of power-to-gas systems, Appl. Energy., 193, 440-454 (2017). https://doi.org/10.1016/j.apenergy.2017.02.063
  3. A. Buttler,and H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renew. Sustain. Energy Rev., 82, 2440-2454 (2018). https://doi.org/10.1016/j.rser.2017.09.003
  4. J. Gorre, F. Ruoss, H. Karjunen, J. Schaffert, and T. Tynjala, Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation, Appl. Energy., 257, 113967 (2020). https://doi.org/10.1016/j.apenergy.2019.113967
  5. H. Blanco, and A. Faaij, A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage, Renew. Sustain. Energy Rev., 81, 1049-1086 (2018). https://doi.org/10.1016/j.rser.2017.07.062
  6. F. Dawood, M. Anda, and G.M. Shafiullah, Hydrogen production for energy: An overview, Int. J. Hydrogen Energy., 45, 3847-3869 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.059
  7. J. Zhu, W. Zhang, Y. Li, W. Yue, G. Geng, and B. Yu, Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr, Ba) 2Mn2-yFeyO5+ δ layered perovskites for SOEC cathodes, Appl. Catal. B Environ., 268, 118389 (2020). https://doi.org/10.1016/j.apcatb.2019.118389
  8. F. Salomone, E. Giglio, D. Ferrero, M. Santarelli, R. Pirone, and S. Bensaid, Techno-economic modelling of a Power-to-Gas system based on SOEC electrolysis and CO2 methanation in a RES-based electric grid, Chem. Eng. J., 377 (2019) 120233. https://doi.org/10.1016/j.cej.2018.10.170
  9. R. Anghilante, D. Colomar, A. Brisse, and M. Marrony, Bottom-up cost evaluation of SOEC systems in the range of 10-100 MW, Int. J. Hydrogen Energy., 43, 20309-20322 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.161
  10. S. Ali, K. Sorensen, and M.P. Nielsen, Modeling a novel combined solid oxide electrolysis cell (SOEC)-Biomass gasification renewable methanol production system, Renew. Energy., 154, 1025-1034 (2020). https://doi.org/10.1016/j.renene.2019.12.108
  11. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 ℃ climate goal, IRENA (2020).
  12. D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, and E. D. Baca, Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 5, 378-385 (2020). https://doi.org/10.1038/s41560-020-0577-x
  13. T. Zhang, K. Yang, C. Wang, S. Li, Q. Zhang, X. Chang, J. Li, S. Li, S. Jia, and J. Wang, Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis, Adv. Energy Mater., 8, 1801690 (2018). https://doi.org/10.1002/aenm.201801690
  14. D. Jang, H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system, Appl. Energy., 287, 116554 (2021). https://doi.org/10.1016/j.apenergy.2021.116554
  15. J. Brauns, and T. Turek, Alkaline water electrolysis powered by renewable energy: A review, Processes., 8, 248 (2020). https://doi.org/10.3390/pr8020248
  16. M. Balogun, W. Qiu, Y. Huang, H. Yang, R. Xu, W. Zhao, G. Li, H. Ji, and Y. Tong, Cost-Effective Alkaline Water Electrolysis Based on Nitrogen-and Phosphorus-Doped Self-Supportive Electrocatalysts, Adv. Mater., 29, 1702095 (2017). https://doi.org/10.1002/adma.201702095
  17. D. Zhou, P. Li, W. Xu, S. Jawaid, J. Mohammed-Ibrahim, W. Liu, Y. Kuang, and X. Sun, Recent advances in non-precious metal-based electrodes for alkaline water electrolysis, ChemNanoMat., 6, 336-355 (2020). https://doi.org/10.1002/cnma.202000010
  18. A. Villagra, and P. Millet, An analysis of PEM water electrolysis cells operating at elevated current densities, Int. J. Hydrogen Energy., 44, 9708-9717 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.179
  19. P. Shirvanian, and F. van Berkel, Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review, Electrochem. Commun., 114, 106704 (2020). https://doi.org/10.1016/j.elecom.2020.106704
  20. S. S. Kumar, and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2, 442-454 (2019). https://doi.org/10.1016/j.mset.2019.03.002
  21. C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. Kreuer, and S. Vierrath, All-Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency, Adv. Energy Mater., 10, 1903995 (2020). https://doi.org/10.1002/aenm.201903995
  22. C. Immerz, M. Paidar, G. Papakonstantinou, B. Bensmann, T. Bystron, T. Vidakovic-Koch, K. Bouzek, K. Sundmacher, and R. Hanke-Rauschenbach, Effect of the MEA design on the performance of PEMWE single cells with different sizes, J. Appl. Electrochem., 48, 701-711 (2018). https://doi.org/10.1007/s10800-018-1178-2
  23. S. Giancola, M. Zaton, A. Reyes-Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Roziere, and D. J. Jones, Composite short side chain PFSA membranes for PEM water electrolysis, J. Memb. Sci., 570, 69-76 (2019). https://doi.org/10.1016/j.memsci.2018.09.063
  24. I. V Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, Comparative study of anion exchange membranes for low-cost water electrolysis, Int. J. Hydrogen Energy., 45, 26070-26079 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.011
  25. H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions, Sustain. Energy Fuels., 4, 2114-2133 (2020). https://doi.org/10.1039/C9SE01240K
  26. I. Vincent, A. Kruger, and D. Bessarabov, Hydrogen Production by water Electrolysis with an Ultrathin Anion-exchange membrane (AEM), Int. J. Electrochem. Sci., 13, 11347-11358 (2018).
  27. I. Vincent, and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renew. Sustain. Energy Rev., 81, 1690-1704 (2018). https://doi.org/10.1016/j.rser.2017.05.258
  28. X. Chu, Y. Shi, L. Liu, Y. Huang, and N. Li, Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis, J. Mater. Chem. A., 7, 7717-7727 (2019). https://doi.org/10.1039/C9TA01167F
  29. H. In Lee, D. T. Dung, J. Kim, J. H. Pak, S. kyung Kim, H. S. Cho, W. C. Cho, and C. H. Kim, The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer, Int. J. Energy Res., 44, 1875-1885 (2020). https://doi.org/10.1002/er.5038
  30. H. I. Lee, M. Mehdi, S. K. Kim, H. S. Cho, M. J. Kim, W. C. Cho, Y. W. Rhee, and C. H. Kim, Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode, J. Memb. Sci., 616, 118541 (2020). https://doi.org/10.1016/j.memsci.2020.118541
  31. J. W. Lee, C. Lee, J. H. Lee, S.-K. Kim, H.-S. Cho, M. Kim, W. C. Cho, J. H. Joo, and C.-H. Kim, Cerium Oxide-Polysulfone Composite Separator for an Advanced Alkaline Electrolyzer, Polymers (Basel), 12, 2821 (2020). https://doi.org/10.3390/polym12122821
  32. S.J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy, 35, 9349-9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  33. A. Lokkiluoto, and M. M. Gasik, Modeling and experimental assessment of Nafion membrane properties used in SO2 depolarized water electrolysis for hydrogen production, Int. J. Hydrogen Energy, 38, 10-19 (2013). https://doi.org/10.1016/j.ijhydene.2012.09.168
  34. J. Malis, P. Mazur, M. Paidar, T. Bystron, and K. Bouzek, Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure, Int. J. Hydrogen Energy, 41, 2177-2188 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.102
  35. H. Ito, T. Maeda, A. Nakano, and H. Takenaka, Properties of Nafion membranes under PEM water electrolysis conditions, Int. J. Hydrogen Energy, 36, 10527-10540 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.127
  36. Y. Kawano, Y. Wang, R. A. Palmer, and S. R. Aubuchon, Stress-strain curves of Nafion membranes in acid and salt forms, Polimeros, 12, 96-101 (2002). https://doi.org/10.1590/S0104-14282002000200008
  37. R. Kumar, C. Xu, and K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells, Rsc Adv., 2, 8777-8782 (2012). https://doi.org/10.1039/c2ra20225e
  38. A.S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources, J. Appl. Electrochem., 43, 107-118 (2013). https://doi.org/10.1007/s10800-012-0490-5
  39. M. Vinothkannan, A. R. Kim, and D. J. Yoo, Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells, RSC Adv., 8, 7494-7508 (2018). https://doi.org/10.1039/C7RA12768E
  40. D. W. Shin, M. D. Guiver, and Y. M. Lee, Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability, Chem. Rev., 117, 4759-4805 (2017). https://doi.org/10.1021/acs.chemrev.6b00586
  41. M.F.A. Kamaroddin, N. Sabli, and T.A.T. Abdullah, Hydrogen Production by Membrane Water Splitting Technologies, Adv. Hydrog. Gener. Technol., 19 (2018).
  42. D. Aili, D. Henkensmeier, S. Martin, B. Singh, Y. Hu, J. O. Jensen, L. N. Cleemann, and Q. Li, Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress, Electrochem. Energy Rev., 1-53 (2020).
  43. N. N. Krishnan, S. Lee, R. V Ghorpade, A. Konovalova, J. H. Jang, H.-J. Kim, J. Han, D. Henkensmeier, and H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell, J. Memb. Sci., 560, 11-20 (2018). https://doi.org/10.1016/j.memsci.2018.05.006
  44. A. Iulianelli, and A. Basile, Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review, Int. J. Hydrogen Energy., 37, 15241-15255 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.063
  45. D. Henkensmeier, M. Najibah, C. Harms, J. Zitka, J. Hnat, and K. Bouzek, Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis, J. Electrochem. Energy Convers. Storage, 18, 24001 (2021). https://doi.org/10.1115/1.4047963
  46. B. C. Bae, E. Y. Kim, S. J. Lee, and H. J. Lee, Research trends of anion exchange membranes within alkaline fuel cells, New & Renewable Energy, 11, 52-61 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  47. X. Wang, W. Sheng, Y. Shen, L. Liu, S. Dai, and N. Li, N-cyclic quaternary ammonium-functionalized anion exchange membrane with improved alkaline stability enabled by aryl-ether free polymer backbones for alkaline fuel cells, J. Memb. Sci., 587, 117135 (2019). https://doi.org/10.1016/j.memsci.2019.05.059
  48. X. Hu, Y. Huang, L. Liu, Q. Ju, X. Zhou, X. Qiao, Z. Zheng, and N. Li, Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability, J. Memb. Sci., 621, 118964 (2021). https://doi.org/10.1016/j.memsci.2020.118964
  49. E. J. Park, and Y. S. Kim, Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performancea topical review, J. Mater. Chem., A. 6, 15456-15477 (2018). https://doi.org/10.1039/C8TA05428B
  50. M. S. Cha, J. E. Park, S. Kim, S.-H. Han, S.-H. Shin, S. H. Yang, T.-H. Kim, D. M. Yu, S. So, and Y. T. Hong, Poly (carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices, Energy Environ. Sci., 13, 3633-3645 (2020). https://doi.org/10.1039/D0EE01842B