• Title/Summary/Keyword:  inhibition

Search Result 14,338, Processing Time 0.04 seconds

Effect of Electron Beam Irradiation on the Development and Reproduction of Phthorimaea operculella (Lepidoptera: Gelechiidae) (전자빔 조사가 감자뿔나방의 발육과 생식에 미치는 영향)

  • Cho, Sun-Ran;Ahn, Hyeonmo;Eom, Taeil;Kyung, Yejin;Lee, Seung-Ju;Kim, Hyun Kyung;Koo, Hyun-Na;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.255-262
    • /
    • 2021
  • The potato tuber moth, Phthorimaea operculella (Zeller) has been known as a quarantine pest of potato. This study investigated inhibition doses of electron beam irradiation (EBM) by comparing their effects on the development and reproduction and DNA damage of the insect pest. Eggs (0-12 h old), larvae (3rd and 5th instar), pupae (less than 1 d old after pupation) and adults (less than 1 d old after emergence) were irradiated with increasing doses of EBM. The EBM with 150 Gy could not completely prevent the hatchability of eggs and pupation of the hatched larvae. The hatchability from the irradiated eggs were 19.3%. However, adult emergence from the irradiated eggs were completely inhibited. When 3rd and 5th instar larvae were irradiated at 100 Gy, the adult emergence from the irradiated larvae and the fecundity of the adults were completely inhibited. When pupae and adults were irradiated at 300 Gy and 400 Gy, respectively, the hatchability of the F1 eggs was completely inhibited. The alkaline comet assay on the level of DNA damage by EBM in P. operculella adults indicates that the EBM increased DNA damage level in a dose-dependent manner, and the damage was repaired in a time-dependent manner. These results may recommend EBM of 150 Gy as a phytosanitary treatment for P. operculella. However further confirmative study is required for the practical application of this EBM dose for P. operculella disinfestation.

Quality Characteristics and Inhibition Activity against Helicobacter pylori KCCM 40449 of Liquorice Yogurts Manufactured by Exopolysaccharide Producing Lactic Acid Bacteria (Exopolysaccharide 생성 유산균을 이용한 감초 추출물 첨가 Yoghurt의 품질특성 및 Helicobacter pylori KCCM 40449 억제활성)

  • Jung, Seung-Won;Kim, Cheol Woo;Lee, Su Han
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.346-354
    • /
    • 2011
  • This study was carried out to fortify the antimicrobial activity of yoghurt by adding liquorice extract to it. The liquorice extracts (1 mg/mL) showed relatively high antibacterial activity against H. pylori KCCM 40449 (p < 0.05). The solvent liquorice extracts of minimal inhibitory concentrations (MIC) against H. pylori KCCM 40449 were 25- 100 ${\mu}g$/mL. Lactobacillus amylovorus DU-21 with high EPS production ability were inoulated to milk after the addition of different amounts of liquorice extracts (0.0%, 0.05%, 0.1% and 0.2%). The physico-chemical characteristics of yoghurts added with liquorice extracts were examined. The initial pH, titratable acidity, viscosity and viable cell counts of the yoghurt added liquorice extracts were 3.41-3.51, 1.021-1.091%, 1,686-1,930 cp and 9.41-9.38 Log CFU/mL, respectively. The viscosity and syneresis of yoghurt were better than that of the control. Antimicrobial activity against H. pylori KCCM 40449 increased with increasing addition of liquorice extract. However, the sensory score of yoghurt added with different amounts of liquorice extracts was lower than that of the control (p < 0.05). As a result of the sensory evaluations, the flavor, taste, texture, color and overall acceptability of the yoghurt with 0.05% liquorice extract were found to be much better than those of the other groups (p < 0.05). Overall, the optimal amount of liquorice extract added in the manufacture of yoghurt was 0.05% of the total weight. Further studies on increment of antimicrobial activity and palatability of liquorice extract added yoghurt are necessary.

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells (구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도)

  • Kwak, Ah-Won;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2019
  • Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Skin Coloration and Endogenous Hormonal Changes of 'Kyoho' Grape by High Temperature at Veraison (변색기 고온에 의한 포도 '거봉'의 과피 착색 및 내생 호르몬 변화)

  • Ryu, Suhyun;Cho, Jung-Gun;Jeong, Jae Hoon;Lee, Seul-Ki;Han, Jeom Hwa;Kim, Myung-Su
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.234-242
    • /
    • 2019
  • We analyzed the anthocyanin accumulation, abscisic acid (ABA), gibberellic acid (GA) contents and metabolic genes expression in berry skins under high temperature (High T) at veraison, in order to investigate the cause of bad coloration of 'Kyoho' grape due to High T in summer season. The coloration of 'Kyoho' grapes was stopped by High T for 10 days from veraison, and the fruit quality was not affected except skin color. Total anthocyanin of skins was decreased by High T treatment and malvidin and peonidin were decreased compared to control. In berry skins, ABA content did not decrease by High T treatment, but it was rather higher than that of control. GA content was increased about two times compared to the control after 10 days of High T treatment, which caused decreased ratio of ABA/GA. Analysis of expression of anthocyanin biosynthetic genes showed that the early biosynthetic genes were not affected by High T and the expression of UFGT was decreased by temperature treatment. ABA biosynthetic gene expressions were not affected by High T and the expression of GA20ox1 and GA2ox1/2, which are known to regulate the biosynthesis and inactivation of GA, were increased and decreased by High T, respectively. Therefore, the bad coloration of 'Kyoho' grapes under the High T at veraison was due to inhibition of anthocyanin biosynthesis of skin, and it was suggested that the anthocyanin biosynthesis was controlled by the ratio of ABA and GA rather than ABA content.

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds (Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구)

  • Patil, Maheshkumar Prakash;Seong, Yeong-Ae;Kang, Min-jae;Singh, Alka Ashok;Niyonizigiye, Irvine;Kim, Gun-Do;Lee, Jong-Kyu
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2019
  • Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.

Development of Water-Resistant O/W Emulsion-Typed Sunscreening Cosmetics through Triblock Polymeric Surfactant-Mediated Re-emulsification Inhibition (삼중블록 고분자 계면활성제의 재유화 억제 기능을 이용한 지속내수성 O/W 에멀젼형 자외선 차단용 화장품 개발)

  • Lee, Ji Hyun;Hong, Sung Yun;Lee, Jin Yong;An, So Youn;Lee, Hyo Jin;Kim, Sung Yong;Lee, Jun Bae;Kim, Jin Woong;Shin, Kyounghee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.199-208
    • /
    • 2019
  • This study reports water-resistant oil-in-water (O/W) emulsion-based sunscreening formulations prepared using a poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) triblock polymeric surfactant. As a result of a variety of outdoor recreational activities such as swimming and hiking, consumer needs for development of advanced water-resistant sunscreen formulations are increasing. Water-resistant sunscreens are mostly based on water-in-oil (W/O) emulsions, because they should not be wiped off by water or sweat. However, the W/O emulsion formulations have a disadvantage in that the feeling of use is oily and difficult to remove. On the other hand, the O/W emulsion formulations are excellent in achieving the better skin feel as well as the easier removal. However, it is difficult to provide the O/W emulsion formulations with the water-repelling performance, since re-emulsification likely occurs upon getting touch with water. To solve this problem, this study proposes a O/W emulsion-based sunscreen formulation, a triblock polymeric surfactant having relatively high interfacial tension HLB value (~ 10). This allows the sunscreen formulations to exhibit the improved water repellence function by preventing their re-emulsification. The sunscreen formation system prepared in this study would be useful for diversification of functional sunscreen products, taking advantages of its excellent emulsion stability, UV protection performance, long lasting water-resistant function and selective cleansing effect with only foam cleanser.

Screening for Fittest Miscellaneous Cereals for Reclaimed Land and Functionality Improvement of Sorghum bicolor Cultivated in Reclaimed Land (간척지 적응성 잡곡 선발 및 간척지 재배 수수의 기능성 향상 효과)

  • Kang, Chan Ho;Lee, In Sok;Kwon, Suk Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.109-126
    • /
    • 2019
  • Genetic resources of 84 species of Setaria italica BEAUVOIS, Sorghum bicolor, and Panicum miliaceum were collected to select the adaptable miscellaneous cereals in Saemangeum reclaimed land. The adaptability of Sorghum bicolor in reclaimed land was the highest among the three cereals cultivated on reclaimed land. The ratio of the average height of Sorghum bicolor plants cultivated in reclaimed land/normal field was 0.82, that of Panicum miliaceum was 0.61, and that of Setaria italica BEAUVOIS was 0.51. Three species of Sorghum bicolor, Satangdajuk, Kkamansusu, and Nampungcharl, were selected as potential genetic resources as they had excellent adaptability to reclaimed land. The yield of Satandaejuk on reclaimed land was 229.4 kg/10a, and the yield ratio of reclaimed land/normal field was 89.3%. The yield of Kkamansusu was 227.4 kg/10a, with reclaimed land/normal field ratio of 87.8%, and yield of Nampungcharl was 239.6 kg/10a, and reclaimed land/normal field ratio of 86%. In order to study the salt tolerance of selected genetic resources, we conducted salinity test. Salinity tolerance of Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl was excellent compared to that of the other cereals. Among these, Satandaejuk had to highest salt tolerance level. Polyphenols, flavonoids, and detoxification of free radical were also studied. The anti-diabetic property of the cereals was also analyzed by ${\alpha}$-glucosidase inhibitory activity. We confirmed that the functionality of 3 lines in reclaimed land had improved in all the functional analysis categories when compared to that with yield in the normal field. Polyphenol, an antioxidant, increased in the range of 2~26% when cultivated in reclaimed land and the flavonoid content also increased from 8.5 to 55.6%. DPPH elimination capability, the ability to scavenge harmful reactive oxygen, also increased from 16.7 to 47% when cultivated in reclaimed land. The anti-diabetic activity and ${\alpha}$-glucosidase inhibition activity of selected Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl also increased from 18.4 to 19.9% when cultivated on reclaimed land.

Physiological Activity and Physicochemical Properties of Condensed Prunus mume Juice Prepared with Pectinase (Pectinase처리를 한 매실 농축액의 이화학적 특성 및 생리활성)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Won, Yeong-Seon;Park, Wool-Lim;Lee, Kwan-Woo;Kim, Hyuk-Joo;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1369-1378
    • /
    • 2018
  • Prunus mume Siebold & Zucc., a member of the Rosaceae family (called Maesil in Korea), has been widely distributed in East Asia, e.g. Korea, Japan and China, and its fruit has been used as a traditional drug and health food. In this study, we evaluated physicochemical properties and physiological activities of condensed Prunus mume juice treated with pectinase (PJ). The values of total acidity, pH, sugar contents, turbidity moisture content of the PJ were 35.81%, 2.73, $54.36^{\circ}Brix$, 2.75 and 51.32%, respectively. The PJ had effective DPPH radical scavenging activity, reducing power effect, $H_2O_2$ scavenging activity and ${\beta}$-carotene bleaching effect. DPPH radical scavenging activities of PJ was 46.31%; their reducing power ($OD_{700}$) was 1.80; $H_2O_2$ scavenging activity of PJ was 91.62%; and ${\beta}$-carotene bleaching effect of PJ was 73.02%. Also, PJ showed effective levels of ${\alpha}$-glucosidase inhibition activity. The cell viability was measured by SRB assay. The PJ significantly decreased the cell viability of mouse melanoma cells (B16) and human melanoma cells (SK-MEL-2 and SK-MEL-28) in a dose-dependent manner, however, there was no effect on human keratinocyte HaCaT. In morphological study, PJ-treated SK-MEL-2 cells showed distorted and shrunken cell masses. Total polyphenol contents and total flavonoid contents of PJ were 588.31 mg% (gallic acid equivalent) and 860.45 mg% (rutin equivalent). The antiproliferative effect of PJ seems to be associated with the antioxidant activity of its flavonoid and polyphenol contents. In conclusion, PJ may be beneficial in development of a functional food material.

The Study of Cosmeceutical Activities from Lentinula edodes extracts and Application a Natural Cosmetic Material (표고버섯 추출물의 화장품약리활성 검증과 천연화장품 소재로써의 활용에 관한 연구)

  • Seo, Myeong-Seong;Jang, Young-Ah;Lee, Jin-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1003-1012
    • /
    • 2018
  • This study is for checking the possibility of Lentinula edodes as cosmetic materials. For this we carried out biological active evaluation about anti-oxidant and anti-inflammatory effects by Lentinula edodes extracts. We extracted Lentinula edodes with water and 70% ethanol and then in order to evaluate anti-oxidant activity we treated samples by concentrations (100, 500, 1000) ${\mu}g/ml$ and carried out 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, the activity of 2,2'-azino-bis ( 3-ethylbenzothiazoline-6-sulphonic acid )-diammonium salt (ABTS) cation radical scavenging and superoxide dismutase(SOD) like activity. Also, in order to evaluate effect of anti-inflammatory the samples in macrophages(RAW 264.7 cells), we carried out evaluation of cell viability, nitric oxide inhibitory activity western blot. The results of DPPH, $ABTS^+$ radical scavenging activity and SOD-like activity of the Lentinula edodes extracts increased in dose-dependent manner. The cytotoxic of samples by MTT assay showed no toxicity at the concentrations of 10, 25 and $50{\mu}g/ml$ of Lentinula edodes extract. Nitric oxide inhibition activity results showed that the extracts reduced NO productions in a concentration-dependent manner. Expression of inflammatory cytokines as $TNF-{\alpha}$, $PGE_2$ and $IL-1{\beta}$ decreased in a concentration-dependent manner and iNOS and COX-2 proteins expression rates were decreased significantly in western blot analysis. From the results of the experiment, it was comfirmed that the Lentinula edodes extracts had excellent anti-oxidant and anti-inflammatory effect and could be used as a safe natural cosmetic material in the future.

Evaluation of Antimicrobial Activity of Steamed and Fermented Asparagus cochinchinenesis (증숙 및 발효한 천문동의 항균활성과 특성)

  • Lee, Seung-Min;Kim, Su-In;Kang, Moon-Sun;Lee, Chung-Yeol;Hwang, Dae-Youn;Lee, Hee-Sup;Kim, Dong-Seob
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • This study was carried out to investigate antimicrobial activity and characteristics of Asparagus cochinchinenesis which was steamed and fermented with lactic acid bacteria. A. cochinchinensis was prepared to steaming process which was washed and freeze dried. A. cochinchinensis was steamed at $95^{\circ}C$ for 12 h and dried by hot air at $50^{\circ}C$ for 24 h. After steaming process, A. cochinchinensis was fermented with lactic acid bacteria (Leuconostoc mesenteroides 4395, Lactobacillus sakei 383 and Lactobacillus plantarum KCCM 11322). Ethyl acetate extracts of fermented A. cochinchinensis had antimicrobial activities for the respiratory disease bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli). A. cochinchinensis had highest antimicrobial activity for the P. aeruginosa which fermented with L. mesenteroides 4395. The minimum inhibition concentration (MIC) of A. cochinchinensis fermented with L. mesenteroides 4395 was 10 mg/mL for S. aureus, S. epidermidis, E. coli and 5 mg/mL for P. aeruginosa. The MIC of A. cochinchinensis fermented with L. sakei 383 and A. cochinchinensis fermented with L. plantarum KCCM 11322 were the same. Total sugar was decreased from $863.33{\pm}17.47mg/mL$ to $722.67{\pm}5.51mg/mL$ during the steaming process. But reducing sugar was increased from $99.36{\pm}1.32mg/mL$ to $109.29{\pm}2.71mg/mL$ during the steaming process. Total sugar was decreased to 301.50-361.42 mg/mL and reducing sugar was decreased to 27.39-62.20 mg/mL during the fermentation process.