Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.3.295

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells  

Kwak, Ah-Won (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Chonbuk National University)
Shim, Jung-Hyun (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Publication Information
Journal of Life Science / v.29, no.3, 2019 , pp. 295-302 More about this Journal
Abstract
Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.
Keywords
Apoptosis; Liquiritigenin; oral squamous cell carcinoma; reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alrushaid, S., Davies, N. M., Martinez, S. E. and Sayre, C. L. 2016. Pharmacological characterization of Liquiritigenin, a chiral flavonoid in licorice. Res. Pharm. Sci. 11, 355-365.   DOI
2 Ariyasu, D., Yoshida, H. and Hasegawa, Y. 2017. Endoplasmic Reticulum (ER) stress and endocrine disorders. Int. J. Mol. Sci. 18.
3 Belmokhtar, C. A., Hillion, J. and Segal-Bendirdjian, E. 2001. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 20, 3354-3362.   DOI
4 Passante, E., Wurstle, M. L., Hellwig, C. T., Leverkus, M. and Rehm, M. 2013. Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells. Cell Death Differ. 20, 1521-1531.   DOI
5 Shimizu, S., Narita, M. and Tsujimoto, Y. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487.   DOI
6 Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418.   DOI
7 Singh, S. K., Banerjee, S., Acosta, E. P., Lillard, J. W. and Singh, R. 2017. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 8, 17216-17228.   DOI
8 Wang, D., Lu, J., Liu, Y., Meng, Q., Xie, J., Wang, Z. and Teng, L. 2014. Liquiritigenin induces tumor cell death through mitogen-activated protein kinase- (MPAKs-) mediated pathway in hepatocellular carcinoma cells. Biomed. Res. Int. 2014, 965316.
9 Taylor, W. R. and Stark, G. R. 2001. Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815.   DOI
10 Vilen, S. T., Salo, T., Sorsa, T. and Nyberg, P. 2013. Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal 2013, 920595.
11 Wang, D., Wong, H. K., Feng, Y. B. and Zhang, Z. J. 2014. Liquiritigenin exhibits antitumour action in pituitary adenoma cells via Ras/ERKs and ROS-dependent mitochondrial signalling pathways. J. Pharm. Pharmacol. 66, 408-417.   DOI
12 Wong, R. S. 2011. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87.   DOI
13 Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511.   DOI
14 Bundela, S., Sharma, A. and Bisen, P. S. 2014. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70. PLoS One 9, e102610.   DOI
15 Chen, J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6, a026104.   DOI
16 Degli Esposti, M. and Dive, C. 2003. Mitochondrial membrane permeabilisation by Bax/Bak. Biochem. Biophys. Res. Commun. 304, 455-461.   DOI
17 Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI
18 Fulda, S. and Debatin, K. M. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811.   DOI
19 Ge, G., Yan, Y. and Cai, H. 2017. Ginsenoside Rh2 inhibited proliferation by inducing ROS Mediated ER stress dependent apoptosis in lung cancer cells. Biol. Pharm. Bull. 40, 2117-2124.   DOI
20 Green, D. R. and Kroemer, G. 2004. The pathophysiology of mitochondrial cell death. Science 305, 626-629.   DOI
21 Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y. and Sakuragi, N. 2014. Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845.
22 Hata, A. N., Engelman, J. A. and Faber, A. C. 2015. The BCL2 Family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475-487.   DOI
23 Zheng, Y. Z., Cao, Z. G., Hu, X. and Shao, Z. M. 2014. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res. Treat. 145, 349-358.   DOI
24 Zhou, Y., Wang, K., Zhen, S., Wang, R. and Luo, W. 2016. Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21 (Waf1/Cip1) and p27(Kip1). Taiwan J. Obstet. Gynecol. 55, 847-851.   DOI
25 Lee, S. H., Meng, X. W., Flatten, K. S., Loegering, D. A. and Kaufmann, S. H. 2013. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 20, 64-76.   DOI
26 Yuan, X., Li, T., Xiao, E., Zhao, H., Li, Y., Fu, S., Gan, L., Wang, Z., Zheng, Q. and Wang, Z. 2014. Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem. Toxicol. 65, 242-251.   DOI
27 Huang, C. H. and Chan, W. H. 2017. Protective effects of Liquiritigenin against citrinin-triggered, oxidative-stressmediated apoptosis and disruption of embryonic development in mouse blastocysts. Int. J. Mol. Sci. 18, pii:E2538.
28 Kardeh, S., Ashkani-Esfahani, S. and Alizadeh, A. M. 2014. Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur. J. Pharmacol. 735, 150-168.   DOI
29 Kishimoto, K., Yoshida, S., Ibaragi, S., Yoshioka, N., Hu, G. F. and Sasaki, A. 2014. Neamine inhibits oral cancer progression by suppressing angiogenin-mediated angiogenesis and cancer cell proliferation. Anticancer Res. 34, 2113-2121.
30 Kumar, M., Nanavati, R., Modi, T. G. and Dobariya, C. 2016. Oral cancer: Etiology and risk factors: A review. J. Cancer Res. Ther. 12, 458-463.   DOI
31 Leibowitz, B. and Yu, J. 2010. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol. Ther. 9, 417-422.   DOI
32 Liu, C., Wang, Y., Xie, S., Zhou, Y., Ren, X., Li, X. and Cai, Y. 2011. Liquiritigenin induces mitochondria-mediated apoptosis via cytochrome c release and caspases activation in HeLa Cells. Phytother. Res. 25, 277-283.   DOI
33 Mishra, D., Singh, S. and Narayan, G. 2016. Curcumin induces apoptosis in Pre-B acute lymphoblastic Leukemia cell lines via PARP-1 cleavage. Asian Pac. J. Cancer Prev. 17, 3865-3869.   DOI
34 Liu, Y., Xie, S., Wang, Y., Luo, K., Wang, Y. and Cai, Y. 2012. Liquiritigenin inhibits tumor growth and vascularization in a mouse model of HeLa cells. Molecules 17, 7206-7216.   DOI
35 Lu, W., Feng, F., Xu, J., Lu, X., Wang, S., Wang, L., Lu, H., Wei, M., Yang, G., Wang, L., Lu, Z., Liu, Y. and Lei, X. 2014. QKI impairs self-renewal and tumorigenicity of oral cancer cells via repression of SOX2. Cancer Biol. Ther. 15, 1174-1184.   DOI
36 Ma, Y., Zhang, J., Zhang, Q., Chen, P., Song, J., Yu, S., Liu, H., Liu, F., Song, C., Yang, D. and Liu, J. 2014. Adenosine induces apoptosis in human liver cancer cells through ROS production and mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 448, 8-14.   DOI
37 Mersereau, J. E., Levy, N., Staub, R. E., Baggett, S., Zogovic, T., Chow, S., Ricke, W. A., Tagliaferri, M., Cohen, I., Bjeldanes, L. F. and Leitman, D. C. 2008. Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol. Cell Endocrinol. 283, 49-57.   DOI
38 Mills, C. C., Kolb, E. A. and Sampson, V. B. 2017. Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer. Cancer Res. 77, 6489-6498.   DOI
39 Mukherjee, A. K., Basu, S., Sarkar, N. and Ghosh, A. C. 2001. Advances in cancer therapy with plant based natural products. Curr. Med. Chem. 8, 1467-1486.   DOI
40 Oh, H., Yoon, G., Shin, J. C., Park, S. M., Cho, S. S., Cho, J. H., Lee, M. H., Liu, K., Cho, Y. S., Chae, J. I. and Shim, J. H. 2016. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int. J. Oncol. 48, 1749-1757.   DOI
41 Oh, H. N., Seo, J. H., Lee, M. H., Kim, C., Kim, E., Yoon, G., Cho, S. S., Cho, Y. S., Choi, H. W., Shim, J. H. and Chae, J. I. 2018. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J. Cell Biochem. 119, 10118-10130.   DOI
42 Oh, H. N., Seo, J. H., Lee, M. H., Yoon, G., Cho, S. S., Liu, K., Choi, H., Oh, K. B., Cho, Y. S., Kim, H., Han, A. L., Chae, J. I. and Shim, J. H. 2018. Oridonin induces apoptosis in oral squamous cell carcinoma probably through the generation of reactive oxygen species and the p38/JNK MAPK pathway. Int. J. Oncol. 52, 1749-1759.