DOI QR코드

DOI QR Code

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds

Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구

  • Patil, Maheshkumar Prakash (Research Institute for Basic Sciences, Pukyong National University) ;
  • Seong, Yeong-Ae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kang, Min-jae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Singh, Alka Ashok (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Niyonizigiye, Irvine (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Lee, Jong-Kyu (Department of Physics, College of Natural Sciences, Pukyong National University)
  • Received : 2019.03.19
  • Accepted : 2019.06.05
  • Published : 2019.06.30

Abstract

Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.

최근에 들어서 전세계적으로 식물 자원에서의 항균력 및 항산화력에 대한 관심이 광범위하게 증가하고 있다. 이는 사용되고 있는 항균제와 항산화제보다 안전한 대체 자원에 대한 관심이 높아졌기 때문으로 볼 수 있다. 따라서 본 연구에서는 Viburnum sargentii 씨앗의 메탄올 추출물의 항균력 및 항산화력과 화학적 구성에 대하여 연구를 진행하였다. 추출물의 화학 조성은 가스 크로마토 그래피-질량 분석법으로 측정하였고, 디스크 확산 분석법을 이용하여 항균 활성을 알아보았다. 액체 배지 감수성 실험을 통해 최소 억제 농도(MIC)를 측정하였고, 한천 희석법을 통해 최소 살균 농도(MBC)를 측정하였다. V. sargentii 메탄올 추출물은 실험에 사용된 그람 양성균(Listeria monocytogenes, Staphylococcus aureus, Staphylococcus saprophyticus) 및 그람 음성균(Escherichia coli, Pseudomonas putida, Proteus vulgaris)의 성장을 억제하였고, MIC와 MBC는 그람 양성균에서 0.156-1.25 mg/ml, 그람 음성균에서는 0.625-5.0 mg/ml의 범위를 나타내었다. 가스 크로마토 그래피-질량 분석법 결과에서는 V. sargentii 메탄올 추출물이 약리 활성을 가지는 ${\beta}-sitosterol$과 vitamin E와 같은 여러 파이토케미컬을 포함하고 있는 것을 확인하였다. V. sargentii 메탄올 추출물의 항산화 활성은 DPPH free radical scavenging assay, reducing power assay, total antioxidant capacity의 세 가지의 실험 방법을 통하여 확인하였으며, V. sargentii 메탄올 추출물의 농도가 증가함에 따라 항산화 활성도 증가하는 것을 세 가지 실험에서 모두 확인하였다. 이러한 결과를 통하여 V. sargentii 씨앗이 병원성 균의 성장을 억제할 수 있는 활성을 가질 뿐만 아니라, 항산화 활성을 가지는 구성물이 풍부함으로 추가적인 연구를 진행하기에도 충분한 가치가 있는 것을 확인하였다.

Keywords

SMGHBM_2019_v29n6_671_f0001.png 이미지

Fig. 1. Antibacterial activity of Viburnum sargentii seeds methanol-extract, ampicillin and kanamycin against pathogenic bacteria measured on agar medium by disc diffusion method. All values presented as mean of triplicates and error bars indicates ± standard deviation.

SMGHBM_2019_v29n6_671_f0002.png 이미지

Fig. 2. Histograms indicates antioxidant activity of methanol extract from seeds of Viburnum sargentii by (A) DPPH free radical scavenging assay, (B) Reducing power assay, and (C) Total antioxidant capacity. All results are presented as a mean ± Standard deviation (n=3).

SMGHBM_2019_v29n6_671_f0003.png 이미지

Fig. 3. GC-MS chromatogram of the methanol extract of Viburnum sargentii seeds.

Table 1. Antibacterial activity of Viburnum sargentii seeds methanol extract

SMGHBM_2019_v29n6_671_t0001.png 이미지

Table 2 GC-MS data for the methanol soluble fractions of Viburnum sargentii (seeds extract)

SMGHBM_2019_v29n6_671_t0002.png 이미지

References

  1. Aliyu, A. B., Ibrahim, M. A., Musa, A. M., Musa, A. O., Kiplimo, J. J. and Oyewale, A. O. 2013. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae). Acta Pol. Pharm. 70, 115-121.
  2. Bae, K. E., Chong, H. S., Kim, D. S., Choi, Y. W., Kim, Y. S. and Kim, Y. K. 2010. Compounds from Viburnum sargentii Koehne and evaluation of their cytotoxic effects on human cancer cell lines. Molecules 15, 4599-4609. https://doi.org/10.3390/molecules15074599
  3. Bartfay, W. J., Bartfay, E. and Johnson, J. G. 2012. Gram-negative and gram-positive antibacterial properties of the whole plant extract of willow herb (Epilobium angustifolium). Biol. Res. Nurs. 14, 85-89. https://doi.org/10.1177/1099800410393947
  4. Brieger, K., Schiavone, S., Miller Jr, F. J. and Krause, K. H. 2012. Reactive oxygen species: from health to disease. Swiss Med. Wkly. 142, w13659.
  5. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eleventh Edition. CLSI document M02-A11 (ISBN 1-56238-781-2). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suit 2500, Wayne, Pennsylvania 19087 USA, 2012.
  6. Demain, A. L. and Fang, A. 2000. The natural functions of secondary metabolites. In History of Modern Biotechnology I. pp. 1-39. Springer, Berlin, Heidelberg.
  7. Eloff, J. N. 1998. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 64, 711-713. https://doi.org/10.1055/s-2006-957563
  8. Ferreira, I. C., Baptista, P., Vilas-Boas, M. and Barros, L. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100, 1511-1516. https://doi.org/10.1016/j.foodchem.2005.11.043
  9. Halliwell, B. 1997. Antioxidants in human health and diseases. Annu. Rev. Nutr. 16, 33-50. https://doi.org/10.1146/annurev.nu.16.070196.000341
  10. Herbig, A. L., Mousties, C. and Renard, C. M. 2017. Impact of three warming-up methods on the vitamin C and 5-methyltetrahydrofolate supplemented to apple and carrot puree. LWT-Food Sci. Technol. 84, 668-673. https://doi.org/10.1016/j.lwt.2017.06.031
  11. Huh, Y. K., Kang, J. H., Lee, S. Y. and Yim, D. S. 2007. Antiinflammatory, analgesic and hepatoprotective effects of aerial part of Viburum sargentii for. sterile. Kor. J. Pharmacogn. 38, 22-26.
  12. Kuete, V., Alibert-Franco, S., Eyong, K. O., Ngameni, B., Folefoc, G. N., Nguemeving, J. R., Tangmouo, J. G., Fotso, G. W., Komguem, J., Ouahouo, B. M. W. and Bolla, J. M. 2011. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int. J. Antimicrob. Agents 37, 156-161. https://doi.org/10.1016/j.ijantimicag.2010.10.020
  13. Kuete, V., Seo, E. J., Krusche, B., Oswald, M., Wiench, B., Schroder, S., Greten, H. J., Lee, I. S. and Efferth, T. 2013. Cytotoxicity and pharmacogenomics of medicinal plants from traditional Korean medicine. J. Evidence-Based Complementary Altern. Med. 2013, 341724.
  14. Kumar, H., Song, S. Y., More, S. V., Kang, S. M., Kim, B. W., Kim, I. S. and Choi, D. K. 2013. Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules 18, 14670-14693. https://doi.org/10.3390/molecules181214670
  15. Liu, Q., Kong, B., Xiong, Y. L. and Xia, X. 2010. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118, 403-410. https://doi.org/10.1016/j.foodchem.2009.05.013
  16. Marchese, A. and Schito, G. C. 2000. Resistance patterns of lower respiratory tract pathogens in Europe. Int. J. Antimicrob. Agents 16, 25-29. https://doi.org/10.1016/S0924-8579(00)00302-2
  17. Moon, D. O., Kim, M. O., Choi, Y. H. and Kim, G. Y. 2008. ${\beta}$-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 264, 181-191. https://doi.org/10.1016/j.canlet.2008.01.032
  18. Ostrovidov, S., Franck, P., Joseph, D., Martarello, L., Kirsch, G., Belleville, F., Nabet, P. and Dousset, B. 2000. Screening of new antioxidant molecules using flow cytometry. J. Med. Chem. 43, 1762-1769. https://doi.org/10.1021/jm991019j
  19. Patil, M. P., Patil, K. T., Ngabire, D., Seo, Y. B. and Kim, G. D. 2016. Phytochemical, Antioxidant and Antibacterial Activity of Black Tea (Camellia Sinensis). Int. J. Pharmacogn. Phytochem. Res. 8, 341-346.
  20. Rogers, S. A., Huigens, R. W., Cavanagh, J. and Melander, C. 2010. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob. Agents Chemother. 54, 2112-2118. https://doi.org/10.1128/AAC.01418-09
  21. Seukep, J. A., Sandjo, L. P., Ngadjui, B. T. and Kuete, V. 2016. Antibacterial activities of the methanol extracts and compounds from Uapaca togoensis against Gram-negative multi-drug resistant phenotypes. S. Afr. J. Bot. 103, 1-5. https://doi.org/10.1016/j.sajb.2015.08.014
  22. Sujatha, S., Anand, S., Sangeetha, K. N., Shilpa, K., Lakshmi, J., Balakrishnan, A. and Lakshmi, B. S. 2010. Biological evaluation of ($3{\beta}$)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int. J. Diabetes Mellitus 2, 101-109. https://doi.org/10.1016/j.ijdm.2009.12.013
  23. Tian, F., Li, B., Ji, B., Yang, J., Zhang, G., Chen, Y. and Luo, Y. 2009. Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities. Food Chem. 113, 173-179. https://doi.org/10.1016/j.foodchem.2008.07.062
  24. Tomassini, L., Gao, J., Serafini, M. and Nicoletti, M. 2005. Iridoid glucosides from Viburnum sargenti. Nat. Prod. Res. 19, 667-671. https://doi.org/10.1080/1478641042000301702
  25. Viale, P., Giannella, M., Tedeschi, S. and Lewia, R. 2015. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr. Opin. Pharmacol. 24, 30-37. https://doi.org/10.1016/j.coph.2015.07.001
  26. Wasowicz, E., Gramza, A., Hes, M., Jelen, H. H., Korczak, J., Malecka, M., Mildner-Szkudlarz, S., Rudzinska, M., Samotyja, U. and Zawirska-Wojtasiak, R. 2004. Oxidation of lipids in food. Pol. J. Food Nutr. Sci. 13, 87-100.
  27. Xie, Y., Wang, J., Geng, Y. M., Zhang, Z., Qu, Y. F. and Wang, G. S. 2015. Pheonolic compounds from the fruits of Viburnum sargentii Koehne. Molecules 20, 14377-14385. https://doi.org/10.3390/molecules200814377
  28. Zhang, C. X., Chen, H., Ren, Y. L. and Zhu, J. 2010. Study on the antibacterial effect of Viburnum sargentii Koehne fruit extract. J. Anhui. Agric. Sci. 38, 11767-11782.