• 제목/요약/키워드: (p, q)-Gamma function

검색결과 33건 처리시간 0.026초

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘 (A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권7호
    • /
    • pp.71-76
    • /
    • 2014
  • 대표적인 공개키 암호방식인 RSA에 사용되는 합성수 n=pq의 큰자리 소수 p,q를 소인수분해하여 구하는 것은 사실상 불가능하다. 공개키 e와 합성수 n은 알고 개인키 d를 모를 때, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$을 구하여 $d=e^{-1}(mod{\phi}(n))$의 역함수로 개인키 d를 해독할수 있다. 따라서 ${\phi}(n)$을 알기위해 n으로부터 p,q를 구하는 수학적 난제인 소인수분해법을 적용하고 있다. 소인수분해법에는 n/p=q의 나눗셈 시행법보다는 $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2의 제곱합동법이 일반적으로 적용되고 있다. 그러나 다양한 제곱합동법이 존재함에도 불구하고 아직까지도 많은 RSA 수들이 해독되지 않고 있다. 본 논문은 ${\phi}(n)$을 직접 구하는 알고리즘을 제안하였다. 제안된 알고리즘은 $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$에 대해 $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ 또는 $2^k{\beta}_j=2{\beta}_j$${\phi}(n)$을 구하였다. 제안된 알고리즘은 $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$의 임의의 위치에 존재하는 ${\phi}(n)$도 약 2배 차이의 수행횟수로 찾을 수 있었다.

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS INCLUDING ASKEY SCHEME

  • Savalia, Rajesh V.
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1175-1199
    • /
    • 2019
  • We construct a general bi-basic inverse series relation which provides extension to several q-polynomials including the Askey-Wilson polynomials and the q-Racah polynomials. We introduce a general class of polynomials suggested by this general inverse pair which would unify certain polynomials such as the q-extended Jacobi polynomials and q-Konhauser polynomials. We then emphasize on applications of the general inverse pair and obtain the generating function relations, summation formulas involving the associated polynomials and derive the p-deformation of some of the q-analogues of Riordan's classes of inverse series relations. We also illustrate the companion matrix corresponding to the general class of polynomials; this is followed by a chart showing the reducibility of the extended p-deformed Askey-Wilson polynomials as well as the extended p-deformed q-Racah polynomials.